18£®ÏÂÁи÷ʽµÄÔËËã½á¹ûÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{x}$¡Â$\frac{x}{3}$=$\frac{9}{x}$B£®£¨$\frac{1}{x-3}-\frac{x+1}{{x}^{2}-1}$£©•£¨x-3£©=$\frac{2}{x-1}$
C£®£¨$\frac{a}{a-2}-\frac{a}{a+2}$£©•$\frac{4-{a}^{2}}{a}$=4D£®£¨$\frac{{b}^{2}}{a+b}-\frac{{a}^{2}}{a+b}$£©•$\frac{ab}{a-b}$=ab

·ÖÎö Ö±½ÓÀûÓ÷Öʽ»ìºÏÔËËã·¨Ôò·Ö±ð»¯¼ò·ÖʽµÃ³ö´ð°¸£®

½â´ð ½â£ºA¡¢$\frac{3}{x}$¡Â$\frac{x}{3}$=$\frac{3}{x}$•$\frac{3}{x}$=$\frac{9}{{x}^{2}}$£¬¹Ê´ËÑ¡Ïî´íÎó£»
B¡¢£¨$\frac{1}{x-3}-\frac{x+1}{{x}^{2}-1}$£©•£¨x-3£©
=$\frac{1}{x-3}$¡Á£¨x-3£©-$\frac{x+1}{£¨x+1£©£¨x-1£©}$¡Á£¨x-3£©
=1-$\frac{1}{x-1}$¡Á£¨x-3£©
=$\frac{2}{x-1}$£¬¹Ê´ËÑ¡ÏîÕýÈ·£»
C¡¢£¨$\frac{a}{a-2}-\frac{a}{a+2}$£©•$\frac{4-{a}^{2}}{a}$
=-£¨a+2£©-£¨2-a£©
=-4£¬¹Ê´ËÑ¡Ïî´íÎó£»
D¡¢£¨$\frac{{b}^{2}}{a+b}-\frac{{a}^{2}}{a+b}$£©•$\frac{ab}{a-b}$
=$\frac{£¨b+a£©£¨b-a£©}{a+b}$•$\frac{ab}{a-b}$
=-ab£¬¹Ê´ËÑ¡Ïî´íÎó£»
¹ÊÑ¡£ºB£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÕýÈ·»¯¼ò·ÖʽÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÁâÐÎABCDµÄ±ß³¤ÊÇ5£¬Á½Ìõ¶Ô½ÇÏßAC¡¢BD½»ÓÚµãO£¬ÇÒA0¡¢B0µÄ³¤·Ö±ðÊǹØÓÚxµÄ·½³Ìx2+£¨2m-1£©x+m2+3=0µÄÁ½¸ù£®
£¨1£©ÇómµÄÖµ£®
£¨2£©ÇóÁâÐÎABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª34¡Á£¨-3£©2-3£¨-3£©3¡Á£¨-3£©2=2¡Á3m+1£¬Çó³ömµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑ֪ʽ×Óx+£¨-12£©=-1£¬Ôò¸Ãʽ×ÓÖеÄxµÄֵΪ11£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®»¯¼ò$\frac{5{x}^{3}y}{15{x}^{2}{y}^{2}}$µÄ½á¹û£¨¡¡¡¡£©
A£®$\frac{x}{10y}$B£®$\frac{{x}^{3}y}{10{x}^{2}{y}^{2}}$C£®$\frac{x}{3y}$D£®$\frac{{x}^{3}y}{3{x}^{2}{y}^{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦÔÚºÚ°åÉÏдÏ·Öʽ·½³Ì$\frac{1}{{a}^{2}-a}$+$\frac{1}{{a}^{2}+a}$=$\frac{2}{a+1}$µÄ¼ÆËã¹ý³ÌÈçÏ£¨Ìáʾ£º$\frac{1}{a-1}-\frac{1}{a}$=$\frac{1}{a£¨a-1£©}$£©£º
$\frac{1}{{a}^{2}-a}+\frac{1}{{a}^{2}+a}$=$\frac{2}{a+1}$
½â£º$\frac{1}{a£¨a-1£©}+\frac{1}{a£¨a+1£©}=\frac{2}{a+1}$£¬
$\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a}-\frac{1}{a+1}$=$\frac{2}{a+1}$£¬
$\frac{1}{a-1}-\frac{1}{a+1}$=$\frac{2}{a+1}$£¬
$\frac{1}{a-1}=\frac{2}{a+1}+\frac{1}{a+1}$£¬
$\frac{1}{a-1}=\frac{3}{a+1}$£¬
2a=4£¬
a=2
¾­¼ìÑ飬a=2ÊÇÔ­·Öʽ·½³ÌµÄ½â
£¨1£©½â¹ØÓÚaµÄ·½³Ì£º$\frac{1}{£¨a-2£©£¨a-1£©}$+$\frac{1}{{a}^{2}-a}$=$\frac{2}{a}$£»
£¨2£©½â¹ØÓÚaµÄ·½³Ì£º$\frac{1}{£¨a-8£©£¨a-7£©}$+$\frac{1}{£¨a-7£©£¨a-6£©}$+$\frac{1}{£¨a-6£©£¨a-5£©}$=$\frac{3}{a-5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£º¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AD¡ÍBCÓÚD£¬OÊÇACÖе㣬EÊÇBCÉÏÒ»µã£¬¡ÏBCE=90¡ã£¬Á¬½ÓBO½»ADÓÚF£®
£¨1£©Èçͼ1£¬µ±tan¡ÏACB=$\frac{1}{2}$ʱ£¬ÊÔÕÒ³öͼÖÐÓëCEÏàµÈµÄÏ߶Σ¬²¢Ö¤Ã÷£»
£¨2£©Èçͼ2£¬Èô¡ÏACB=¦Á£¬BO=m£¬ÇóOEµÄ³¤£¨ÓæÁ£¬m±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=3AD£¬E¡¢FÔÚABÉÏ£¬ÇÒAE=EF=FB£¬AC½»DFÓÚG£¬Á¬½ÓEG£®ÇóÖ¤£ºEG¡ÍDF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®x+£¨2x-1£©-£¨5x+4£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸