分析 (1)由AD=AC,利用等边对等角得到一对角相等,再由已知角相等,利用两对对应角相等的三角形相似即可得证;
(2)根据相似三角形的性质得到$\frac{CD}{BC}=\frac{FD}{AC}$,由D是BC边的中点,得到BC=2CD,于是得到AD=AC=2FD,由于∠ACD=∠ADC,∠B=∠FCD,推出∠EAD=∠ACE,得到△EAF∽△ECA,根据相似三角形的性质得到$\frac{EA}{EC}=\frac{EF}{EA}=\frac{AF}{AC}$=$\frac{1}{2}$,即可得到结论.
解答 (1)证明:∵AD=AC,
∴∠ADC=∠ACB,
∵∠B=∠ECB,
∴△ABC∽△FCD;
(2)∵△ABC∽△FCD,
∴$\frac{CD}{BC}=\frac{FD}{AC}$,
∵D是BC边的中点,
∴BC=2CD,
∴AD=AC=2FD,
∵∠ACD=∠ADC,∠B=∠FCD,
∴∠EAD=∠ACE,
∴△EAF∽△ECA,
∴$\frac{EA}{EC}=\frac{EF}{EA}=\frac{AF}{AC}$=$\frac{1}{2}$,
∴EC=2EA=4EF,
∴FC=3EF.
点评 本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com