分析 (1)由已知得出$\widehat{AC}=\widehat{AD}$,由垂径定理得出OA⊥CD,由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,因此OA⊥AB,即可得出结论;
(2)连接OD,由垂径定理得出CF=DF=4,由平行线得出△ADF∽△ECF,得出对应边成比例,证出AD=CE,AF=EF,得出BC=CE,BE=10,由勾股定理求出AE,得出AF=EF=3,设OE=x,则OF=3-x,⊙O的半径为6-x,由勾股定理得出方程,解方程即可.
解答 (1)证明:∵AC=AD,
∴$\widehat{AC}=\widehat{AD}$,
∴OA⊥CD,
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴OA⊥AB,
∴AB是⊙O的切线;![]()
(2)解:连接OD,如图所示:
∵OA⊥CD,
∴CF=DF=4,
∵AD∥BC,
∴△ADF∽△ECF,
∴$\frac{AD}{CE}$=$\frac{AF}{EF}=\frac{DF}{CF}$=1,
∴AD=CE,AF=EF,
∴BC=CE,
∴BE=2BC=2AD=10,
∴AE=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴AF=EF=3,
设OE=x,则OF=3-x,⊙O的半径为6-x,
由勾股定理得:OF2+DF2=OD2,
即(6-x)2=(3-x)2+42,
解得:x=$\frac{11}{6}$,
即OE=$\frac{11}{6}$.
点评 本题考查了切线的判定、垂径定理、平行四边形的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理得出方程是解决问题(2)的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 互相平行 | B. | 互相垂直 | C. | 不相交也不平行 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{4}$ | C. | $\sqrt{3}-\frac{3}{2}$ | D. | $2-\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com