分析 (1)首先根据角平分线的定义求出∠ABD=∠CBD,然后在△ABD和△CBD中,根据SAS证明两个三角形全等,进而得到∠ADB=∠CDB,AD=CD,根据等腰三角形的性质可得BD垂直平分AC,进而可得点A与C关于直线BD对称;
(2)首先证明四边形PMDN是矩形,再根据角平分线上的点到角两边的距离相等可得PM=PN,进而可得四边形MPND为正方形.
解答
证明:(1)连接AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠DCB}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,DA=DC,
∴BD垂直平分AC,
∴点A与C关于直线BD对称;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四边形PMDN是矩形,
∵∠ADB=∠CDB,
∴BD平分∠ADC,
∵PM⊥AD,PN⊥CD,
∴PM=PN,
∴四边形MPND为正方形.
点评 此题主要考查了正方形的判定,以及等腰三角形的性质,关键是掌握等腰三角形三线合一,邻边相等的矩形是正方形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 为了了解一批汽车轮胎的使用年限,应采用抽样调查的方式 | |
| B. | “50名同学中恰有2名同学的生日是同一天”属于随机事件 | |
| C. | “早晨的太阳从东方升起”属于必然事件 | |
| D. | “长为3cm,5cm,9cm的三条线段围成一个三角形”属于可能事件 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 购买数量(贴) | 单价(元/贴) |
| 不超过10贴(包含10贴) | 9 |
| 超过10贴不超过m贴的部分(15≤m≤30) | 8 |
| 超过m贴的部分 | 7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com