精英家教网 > 初中数学 > 题目详情
10.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:点A与C关于直线BD对称.
(2)若∠ADC=90°,求证四边形MPND为正方形.

分析 (1)首先根据角平分线的定义求出∠ABD=∠CBD,然后在△ABD和△CBD中,根据SAS证明两个三角形全等,进而得到∠ADB=∠CDB,AD=CD,根据等腰三角形的性质可得BD垂直平分AC,进而可得点A与C关于直线BD对称;
(2)首先证明四边形PMDN是矩形,再根据角平分线上的点到角两边的距离相等可得PM=PN,进而可得四边形MPND为正方形.

解答 证明:(1)连接AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠DCB}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,DA=DC,
∴BD垂直平分AC,
∴点A与C关于直线BD对称;

(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四边形PMDN是矩形,
∵∠ADB=∠CDB,
∴BD平分∠ADC,
∵PM⊥AD,PN⊥CD,
∴PM=PN,
∴四边形MPND为正方形.

点评 此题主要考查了正方形的判定,以及等腰三角形的性质,关键是掌握等腰三角形三线合一,邻边相等的矩形是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.若$\sqrt{x-2y+9}$与|x-y+3|互为相反数,则x+y的值为(  )
A.3B.9C.12D.27

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:在正方形ABCD中,对角线AC长为10,点A、C到直线l的距离均为3,则点B到直线l的距离为2或4或8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.求下列各式中x的值.
(1)x2=5
(2)x2-5=$\frac{4}{9}$
(3)(x-2)2=125
(4)(y+3)3+64=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.把下列各式分解因式.
(1)9a2-$\frac{1}{4}{b}^{2}$
(2)(x+y)2-10(x+y)+25
(3)-3ma3+6ma2-12ma
(4)x2(x-y)+(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列说法中,不正确的是(  )
A.为了了解一批汽车轮胎的使用年限,应采用抽样调查的方式
B.“50名同学中恰有2名同学的生日是同一天”属于随机事件
C.“早晨的太阳从东方升起”属于必然事件
D.“长为3cm,5cm,9cm的三条线段围成一个三角形”属于可能事件

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.娇兰佳人化妆品店为了激发消费者消费,在劳动节当天,对MG面膜进行促销,方案如下:
购买数量(贴)单价(元/贴)
不超过10贴(包含10贴)9
超过10贴不超过m贴的部分(15≤m≤30)8
超过m贴的部分7
根据上表中提供的信息,解答下列问题:
(1)若张女士欲购买这款面膜14贴,求她应支付的钱数;
(2)设张女士购买的面膜的数量为x贴,应支付的钱数为y元,请写出y关于x的函数关系式;
(3)若张女士购买面膜的数量为20贴,支付的钱数为y元,当y<170时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,AC=AD,⊙O是△ACD的外接圆,BC的延长线与AO的延长线交干E.
(1)求证:AB是⊙O的切线;
(2)若AB=8,AD=5,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,一次函数y=ax+b与反比例函数y=$\frac{k}{x}$的图象交于A(-2,1),B(1,n)两点.
(1)求出a、b、k的值;
(2)求△ABO的面积;
(3)请写出ax+b<$\frac{k}{x}$的解集.

查看答案和解析>>

同步练习册答案