精英家教网 > 初中数学 > 题目详情
9.如图,数轴上两点A、B表示的数可能是(  )
A.-1.5和2.5B.-2.5和2.5C.-1.5和3.5D.-2.5和3.5

分析 根据各点在数轴上的位置得出A、B两点表示数的范围,找出符合条件的选项即可.

解答 解:∵由图可知,-2<A<-1,2<B<3,
∴A、B表示的数可能是-1.5和2.5.
故选A.

点评 本题考查的是数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列计算中正确的是(  )
A.$\frac{1}{3}$+$\frac{1}{2}$=$\frac{2}{5}$B.$\root{3}{-27}$=3C.a10=(a52D.b-2=-b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若$\sqrt{x-2y+9}$与|x-y+3|互为相反数,则x+y的值为(  )
A.3B.9C.12D.27

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,△ABC中,AD⊥BC于D,AE平分∠BAC交BC边于点E,∠C=2∠DAE,AC=11,AB=6,则CE=$\frac{55}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解分式方程:$\frac{3}{x-1}$+1=$\frac{{x}^{2}}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.长宽比为$\sqrt{n}:1$(n为正整数)的矩形称为$\sqrt{n}$矩形.下面,我们通过折叠的方式折出一个$\sqrt{2}$矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为$\sqrt{2}$矩形.
证明:设正方形ABCD的边长为1,则BD=$\sqrt{{1^2}+{1^2}}=\sqrt{2}$.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.∴EF∥AD.
∴$\frac{BG}{BD}=\frac{BF}{AB}$,即$\frac{1}{{\sqrt{2}}}=\frac{BF}{1}$,∴$BF=\frac{1}{{\sqrt{2}}}$.∴$BC:BF=1:\frac{1}{{\sqrt{2}}}=\sqrt{2}:1$.
∴四边形BCEF为$\sqrt{2}$矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是$\sqrt{2}$-1;
(2)已知四边形BCEF为$\sqrt{2}$矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN为$\sqrt{3}$矩形;
(3)将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一个“$\sqrt{n}$矩形”,则n的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:在正方形ABCD中,对角线AC长为10,点A、C到直线l的距离均为3,则点B到直线l的距离为2或4或8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.求下列各式中x的值.
(1)x2=5
(2)x2-5=$\frac{4}{9}$
(3)(x-2)2=125
(4)(y+3)3+64=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,AC=AD,⊙O是△ACD的外接圆,BC的延长线与AO的延长线交干E.
(1)求证:AB是⊙O的切线;
(2)若AB=8,AD=5,求OE的长.

查看答案和解析>>

同步练习册答案