精英家教网 > 初中数学 > 题目详情
如图所示,分别以四边形的各个顶点为圆心,半径为10作圆(这些圆互不相交).问这些圆与四边形的公共部分(即图中阴影部分)的面积是多少?为什么?
考点:扇形面积的计算,多边形内角与外角
专题:
分析:四个扇形的圆心角的和是四边形的四个内角的和是360度,正好能构成一个周角.并且四个扇形半径相等,因而把阴影部分剪下来拼在一起正好构成一个圆,故根据圆的面积公式即可得出结论.
解答:解:阴影部分面积等于圆的面积.
理由:∵四边形内角和是360°,把四边形的阴影部分剪下来,恰好拼成一个圆,
∴阴影部分的面积等于圆的面积为25π.
点评:本题考查的是扇形面积的计算,熟知四边形的内角和等于360°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

求值:(
2a-2b
a2-2ab+b2
+
b
a2-b2
)÷
3b+2a
a-b
(其中a=5,b=2)

查看答案和解析>>

科目:初中数学 来源: 题型:

下列计算正确的是(  )
A、(2x+3y)2=4x2+9y2
B、(-c+
1
2
2=-c2+c+
1
4
C、(
1
3
m-
1
2
2=
1
9
m2-
1
3
m+
1
4
D、(2a+5b)2=4a2+10ab+25b2

查看答案和解析>>

科目:初中数学 来源: 题型:

在菱形ABCD中,对角线AC与BD相交于点O,AE⊥CD于点E,且AE=OD,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各选项中的两个图形不一定相似的是(  )
A、两个正方形
B、两个等边三角形
C、各有100°角的两个等腰三角形
D、各有45°角的两个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品约售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围.
(2)若每个月的利润为2200元,求每件商品的售价应定为多少元?
(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在每个小方格都是正方形的网格中,一颗棋子从P点开始依次关于点A,B,C作循环对称跳动,即第一次跳到P点关于A点的对称点M处,第二次跳到M点关于B点的对称点N处,第三次跳到N点关于C点的对称点处,…,以此类推,循环往复,经过2015次跳动后,距离棋子落点最近的点是(  )
A、点AB、点BC、点CD、点P

查看答案和解析>>

科目:初中数学 来源: 题型:

一条弦所对的圆心角是60°,则它所对的圆周角是(  )
A、30°
B、150°
C、30°或150°
D、60°或120°

查看答案和解析>>

同步练习册答案