精英家教网 > 初中数学 > 题目详情

【题目】为迎接2020年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:

1)在这次调查中,一共调查了多少名学生;

2)将条形统计图补充完整;

3)若该中学九年级共有860人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?

【答案】1)在这次调查中,一共调查了50名学生;(2)条形统计图补充完整图见解析;(3)估计该校九年级共有172名学生的数学成绩可以达到优秀.

【解析】

1)根据“良”的学生人数和所占百分比求出总人数;

2)根据(1)的总人数,计算出“中”的人数,从而将条形统计图补充完整;

3)用九年级的总人数乘以优秀人数所占百分比,即可得出答案.

1(名)

∴在这次调查中,一共调查了50名学生.

2 (名)

∴中档成绩的学生有12.

3(名)

∴估计该校九年级共有172名学生的数学成绩可以达到优秀.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.

1)该店销售该商品原来一天可获利润 元.

2)设后来该商品每件售价降价元,此店一天可获利润元.

若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线L经过点A-30)和点B0-6),L关于原点O对称的抛物线为.

1)求抛物线L的表达式;

2)点P在抛物线上,且位于第一象限,过点PPD⊥y轴,垂足为D.若△POD△AOB相似,求符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)计算:(10+2sin30°-+|2017|

2)如图,在ABC中,已知∠ABC=30°,将ABC绕点B逆时针旋转50°后得到A1BC1,若∠A=100°,求证:A1C1BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(2,﹣4),直线x=2x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到点A时停止移动.

1)线段OA所在直线的函数解析式是 

2)设平移后抛物线的顶点M的横坐标为m,问:当m为何值时,线段PA最长?并求出此时PA的长.

3)若平移后抛物线交y轴于点Q,是否存在点Q使得OMQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为为正整数,行进时间为.如图画出了的函数图象.

1)观察图,其中

2)求第2趟电瓶车距乙地的路程的函数关系式;

3)当时,在图中画出的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年高一新生开始,某省全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考

1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)

2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线;C1y=﹣x+2)(xm)(m0)与x轴交于点BC(点B在点C的左侧),与y轴交于点E

1)求点B、点C的坐标;

2)当BCE的面积为6时,若点G的坐标为(0b),在抛物线C1的对称轴上是否存在点H,使得BGH的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;

3)在第四象限内,抛物线C1上是否存在点F,使得以点BCF为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面上AB两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点AB的“领域”.

1)已知点A的坐标为(﹣11),点B的坐标为(33),顶点AB的“领域”的面积为   

2)若点AB的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:

已知点A的坐标为(20),若点AB的“领域”的面积为16,点Bx轴上方,求B点坐标;

已知点A的坐标为(2m),若在直线ly=﹣3x+2上存在点B,点AB的“领域”的面积不超过16,直接写出m的取值范围.

查看答案和解析>>

同步练习册答案