精英家教网 > 初中数学 > 题目详情

【题目】如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是 上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为(  )

A.12
B.6
C.8
D.4

【答案】B
【解析】解:∵PA,PB分别和⊙O切于A,B两点,
∴PA=PB,
∵DE是⊙O的切线,
∴DA=DC,EB=EC,
∵△PDE的周长为12,
即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,
∴PA=6.
故选B.
由PA,PB分别和⊙O切于A,B两点与DE是⊙O的切线,根据切线长定理,即可得PA=PB,DA=DC,EB=EC,又由△PDE的周长为12,易求得PA+PB=12,则可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,MAB的中点,NAC的中点.

(1)求线段CM的长;

(2)求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.

1)甲、乙两种套房每套提升费用各多少万元?

2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?

3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a0),市政府如何确定方案才能使费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察一列数2481632,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是________;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18________an________

(2)欲求133233+…+320的值,可令

S133233+…+320,①

将①两边同乘3,得__________________,②

由②减去①,得S____________

(3)用由特殊到一般的方法知:若数列a1a2a3,…,an,从第二项开始每一项与前一项之比的常数为q,则an________(用含a1qn的代数式表示).如果这个常数q≠1,求a1a2a3+…+an的值(用含a1qn的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为(  )

A. 2998 B. 3001 C. 3002 D. 3005

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是(  )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:
(1)PA的长;
(2)∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(  )

A.4
B.6
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三边ABBCCA长分别是203040,其三条角平分线将△ABC分为三个三角形,则SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

同步练习册答案