精英家教网 > 初中数学 > 题目详情

【题目】如图(1),在四边形中,,动点从点出发,沿运动至点停止.设点运动的路程为的面积为,如果关于的函数图象如图(2)所示,则的面积是(

A.6B.5C.4D.3

【答案】D

【解析】

根据图1可知,可分PBC上运动和PCD上运动分别讨论,由此可得BCCD的值,进而利用三角形面积公式可得的面积.

解:动点P从直角梯形ABCD的直角顶点B出发,沿BCCD的顺序运动,

PBC段运动,ABP面积yx的增大而增大;
PCD段运动,因为ABP的底边不变,高不变,所以面积y不变化.

由图2可知,当0<x<2,yx的增大而增大;当2<x<5,y的值不随x变化而变化.

综上所述,BC=2,CD=5-2=3,

.
故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察与思考:阅读下列材料,并解决后面的问题

在锐角△ABC中,∠A、∠B、∠C的对边分别是abc,过AADBCD(如图(1)),则sinB=,sinC=,即ADcsinBADbsinC,于是csinBbsinC,即,同理有:所以

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.

根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A   AC   

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,2.449)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kgB型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC是∠AOB的平分线,点POC上且OP=4,∠AOB=60°,过点P的动直线DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的一条角平分线.分别在上,且四边形是正方形.

1)求证:点的平分线上;

2)若,且正方形的面积为4,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.

(1)求证:四边形OCAD是平行四边形;

(2)填空:①当∠B= 时,四边形OCAD是菱形;

②当∠B= 时,AD与相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察猜想:

RtABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是   ,位置关系是   

(2)探究证明:

在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.

(3)拓展延伸:

如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他条件不变,过点DDFADCE于点F,请直接写出线段CF长度的最大值.

查看答案和解析>>

同步练习册答案