【题目】如图,在正方形ABCD中,点P在线段CB的延长线上,连接PA,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE,过点E作EF⊥BC于H,与对角线AC交于点F.
(1)请根据题意补全图形;
(2)求证:EH=FH.
【答案】(1)图见解析;(2)证明见解析.
【解析】
(1)根据题意画出对应的几何图形即可;
(2)先根据题意和正方形的性质推出FH=CH,再根据旋转的性质和AAS证明△APB≌△PEH,得到PB=EH,PH=AB,然后利用等线段代换即可得到结论.
(1)解:如图.
(2)证明:∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°,∠ACB=45°,
∴△CFH为等腰直角三角形,
∴FH=CH,
∵线段PA绕点P顺时针旋转90°,得到线段PE,EF⊥BC,
∴PA=PE,∠APE=∠PHE =∠ABC =90°,
∵∠APB+∠HPE=90°,∠APB+∠PAB=90°,
∴∠PAB=∠HPE,
∴△APB≌△PEH(AAS),
∴PB=EH,PH=AB,
∴PH=BC,
∴PB=CH,
∴CH=HE,
∴EH=FH.
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于两点,过点作轴,垂足为点,且。
(1)求一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式的解集;
(3)若是反比例函数图象上的两点,且,求实数的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于钝角α,定义它的三角函数值如下:
sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c经过点A(3﹣m,4),且过点B(3+m,4),A在B的左侧,顶点为P.
(1)求b的值;
(2)当c=4时,求sin∠APB;
(3)抛物线y=x2+bx+c上是否存在点Q,使得四边形OPQA是平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车销售公司11月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出部汽车,则该部汽车的进价为万元,每多售出部,所有售出的汽车的进价均降低万元/部.月底厂家再根据销售量返利给销售公司:销售量在部以内(含部),每部返利万元;销售量在部以上,每部返利万元.
(1)若该公司当月售出部汽车,则每部汽车的进价为 万元;
(2)若汽车的售价为万元/部,该公司计划当月盈利万元,则需售出多少部汽车? (盈利=销售利润+返利)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)对于任意正实数a、b,
∵≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有当a=b时,a+b=2).
即当a=b时,a+b取得最小值,且最小值为2.
根据上述内容,回答下列问题:
问题1:若m>0,当m= 时,m+有最小值为 ;
问题2:若函数y=a+,则当a= 时,函数y=a+有最小值为 ;
(探索应用)已知点Q(﹣3,﹣4)是双曲线y=上一点,过Q做QA⊥x轴于点A,作QB⊥y轴于点B.点P为双曲线y=上任意一点,连接PA,PB,求四边形AQBP的面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
则m的值是_____,当y<5时,x的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】折纸是一项有趣的活动,在折纸过程中,我们可以通过研究图形的性质和运动,确定图形位置等,进一步发展空间观念. 今天,就让我们带着数学的眼光来玩一玩折纸.
实践操作
如图1,将矩形纸片ABCD沿对角线AC翻折,使点落在矩形ABCD所在平面内,C和AD相交于点E,连接D.
解决问题
(1)在图1中,①D和AC的位置关系是_____;②将△AEC剪下后展开,得到的图形是____;
(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明;若不成立,请说明理由;
拓展应用
(3)在图2中,若∠B=30o,AB=,当A⊥AD时,BC的长度为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com