精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,⊙OABC的内切圆,切点分别为DEF

1)已知∠C90°

①若BD6AD4,则⊙O的半径r ABC的面积为

②若BDmADn,请用含mn的代数式表示ABC的面积;

2)若,试判断ABC的形状,并说明理由。

【答案】1)①224;②mn ;(2)直角三角形,理由见解析.

【解析】

1)①先根据切线长定理得出,再根据勾股定理列出关于的方程,解方程即可,再根据三角形面积公式求解即可;

②根据①中的式子代入,利用完全平方公式和平方差公式得出,然后根据三角形面积公式求解即可;

2)先把转化成,然后对变形整理得到结果为,即可证明是直角三角形.

1)①连接ODOEOF,如图所示:

的内切圆,DEF为切点,

又∵

∴四边形ECFO为正方形,

解得:(舍去),

②∵

由①可知

对上式右边进行配方得:

2)∵

是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为(  )

A. (1,1) B. (0, C. D. (﹣1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则的值是 ___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A、B、C都是格点每个小方格的顶点叫格点,其中

外接圆的圆心坐标是______;

外接圆的半径是______;

已知D、E、F都是格点成位似图形,则位似中心M的坐标是______;

请在网格图中的空白处画一个格点,使,且相似比为:1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D

I)如图①,若BC是⊙O的直径,BC4,求BD的长;

)如图②,若∠ABC的平分线交AD于点E,求证:DEDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人:

1)第一轮后患病的人数为 ;(用含x的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形ABC的直角边AB的长为,将ABC绕点A逆时针旋转15°后得到ABCACBC相交于点D,则图中阴影ADC的面积等于(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

(1)请补全函数图象;

(2)方程x3﹣2x=﹣2实数根的个数为   

(3)观察图象,写出该函数的两条性质.

查看答案和解析>>

同步练习册答案