精英家教网 > 初中数学 > 题目详情
2.如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动;同时一动点Q从点D出发,以每秒3个单位长度的速度沿DO向点O运动,运动到点O停止,点Q与点P同时停止.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点M,使得△BCM以BC为腰的等腰三角形?若存在,求出点M的坐标;
(3)当Q运动时间t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

分析 (1)根据AB、OB的长,即可得到A、B点的坐标;由于四边形ABCO是平行四边形,则AB=OC,由此可求出OC的长,即可得到C点的坐标,进而可用待定系数法求出抛物线的解析式;
(2)根据抛物线的解析式可求出D点的坐标及抛物线的对称轴方程,使得△BCM以BC为腰的等腰三角形,则BC=BM,进而可求出点M的坐标;
(3)由于∠PBO、∠QOB都是直角,对应相等,若以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,则有两种情况:①P、Q在y轴同侧,②P、Q在y轴两侧;每种情况又分为△PBO∽△QOB(此时两者全等),△PBO∽△BOQ两种情况;根据不同的相似三角形所得到的不同的比例线段即可求出t的值.

解答 解:
(1)∵四边形ABCD是平行四边形,
∴OC=AB=4.
∴A(4,2),B(0,2),C(-4,0).
∵抛物线y=ax2+bx+c过点B,
∴c=2.
由题意,有$\left\{\begin{array}{l}16a-4b+2=0\\ 16a+4b+2=2.\end{array}\right.$,
解得$\left\{\begin{array}{l}a=-\frac{1}{16}\\ b=\frac{1}{4}.\end{array}\right.$,
∴所求抛物线的解析式为$y=-\frac{1}{16}{x^2}+\frac{1}{4}x+2$;
(2)在抛物线的对称轴上存在点M,使得△BCM以BC为腰的等腰三角形,理由如下:
设抛物线的对称轴与AB交于点E,将抛物线的解析式配方,得$y=-\frac{1}{16}{({x-2})^2}+2\frac{1}{4}$.
∴抛物线的对称轴为x=2,
若使得△BCM以BC为腰的等腰三角形,则△OBC≌△EBM,
所以M的坐标为(2,6),(2,-2);
(3)若使以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,
∵∠PBO=∠BOQ=90°,
∴有$\frac{BP}{OB}=\frac{OQ}{BO}$或$\frac{BP}{OB}=\frac{BO}{OQ}$,
即PB=OQ或OB2=PB•QO.
①若P、Q在y轴的同侧.如图1

当PB=OQ时,t=8-3t,
∴t=2.
当OB2=PB•QO时,t(8-3t)=4,即3t2-8t+4=0.
解得${t_1}=2,{t_2}=\frac{2}{3}$.
②当P、Q在y轴的两侧;如图2

当PB=OQ时,Q、C重合,P、A重合,此时t=4;
当OB2=PB•QO时,t(3t-8)=4,
即3t2-8t-4=0,
解得t=$\frac{4±2\sqrt{7}}{3}$;
∵t=$\frac{4-2\sqrt{7}}{3}$<0,故舍去;
∴t=$\frac{4+2\sqrt{7}}{3}$;
∴当t=2或t=$\frac{2}{3}$,t=4或t=$\frac{4+2\sqrt{7}}{3}$秒时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似.

点评 本题是一道二次函数的综合试题,考查了待定系数法求二次函数的解析式,平行四边形的性质和等腰三角形的性质的运用,相似三角形的判定与性质和全等三角形的判定与性质的运用及数学分类思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是(  )
A.对学校的同学发放问卷进行调查
B.对在路边行走的学生随机发放问卷进行调查
C.对在路边行走的行人随机发放问卷进行调查
D.对在图书馆里看书的人发放问卷进行调查

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,矩形OABC的三个顶点分别是A(4,0),B(4,3),C(0,3).动点P从原点O出发,沿对角线OB以每秒1个单位长的速度向点B匀速运动,同时另一动点Q从点A出发,沿线段AO以每秒$\frac{4}{5}$个单位长的速度向点O匀速运动,过P作PH⊥OA于点H,连接PQ、QB.当动点P到达终点B时,动点Q也随之停止运动.设点P、Q运动的时间为t秒(t>0).

(1)点P的坐标是($\frac{4}{5}$t,$\frac{3}{5}$t);
(2)在动点P、Q运动的过程中,是否存在t的值,使以P、H、Q为顶点的三角形与△BAQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,正方形ABCD的边长为6cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或4cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是(  )
A.0<AD<3B.1≤AD<$\frac{5}{2}$C.$\frac{15}{7}$≤AD<$\frac{5}{2}$D.$\frac{15}{8}$≤AD<$\frac{5}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,抛物线的解析式为y=-x2+2x+5,点A为抛物线上一点,且坐标为(-1,a).
(1)求a的值.
(2)点B为对称轴上一点,连接AB,绕点B逆时针旋转90°,恰与第三象限的抛物线交于一点C,求点C的坐标.
(3)在(2)的条件下,对称轴上有一点D,点E在CD的延长线上,且CD=3DE,当tan∠DAE=$\frac{1}{2}$时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,⊙Q交坐标轴于A,B,C,D,点P在弦EB的延长线上,且BC平分∠ABP.
(1)求证:$\widehat{AC}$=$\widehat{EC}$;
(2)若点B的坐标是(2,0),求AB-BE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.-5x2y2+3x2y+2x-5是四次四项式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:
+(-3x2+5x-7)=-2x2+3x-6
(1)求所捂的多项式;
(2)若x是$\frac{1}{4}$x=-$\frac{1}{2}$x+3的解,求所捂多项式的值;
(3)若x为正整数,任取x几个值并求出所捂多项式的值,你能发现什么规律?
(4)若所捂多项式的值为144,请直接写出x的取值.

查看答案和解析>>

同步练习册答案