精英家教网 > 初中数学 > 题目详情

【题目】解方程.

1x22x20

25x+23x2

35x32x29

4)(y3)(y1)=8

【答案】1x1+x1;(2 x=﹣x2;(3x3x;(4y5y=﹣1

【解析】

1)配方法求解可得;

2)整理后因式分解法求解可得;

3)因式分解法求解可得;

4)整理后因式分解法求解可得.

解:(1x22x20

x22x2

x22x+12+1,即(x123

x1x1=﹣

解得:x1+x1

25x+23x2

整理,得:3x25x20

∴(3x+1)(x2)=0

3x+10x20

解得:x=﹣x2

35x32x29

5x32﹣(x+3)(x3)=0

因式分解可得:(x3)(5x15x3)=0

即(x3)(4x18)=0

x304x180

解得:x3x

4)(y3)(y1)=8

整理,得:y24y50

∴(y5)(y+1)=0

y50y+10

解得:y5y=﹣1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.

(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是   ,衍生直线的解析式是   

(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;

(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.

(1)求证:∠AEB=∠ADC;

(2)连接DE,若ADC=105°,求BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作ADBC,与ABC的平分线交于点D,BD与AC交于点E,与O交于点F.

(1)求DAF的度数;

(2)求证:AE2=EFED;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。

(1)以O点为位似中心在y轴的左侧将OBC放大到两倍画出图形。

(2)写出B、C两点的对应点B、C的坐标;

(3)如果OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴的负半轴于点.轴正半轴上一点,点关于点的对称点恰好落在抛物线上.过点轴的平行线交抛物线于另一点.若点的横坐标为1,则的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平行四边形中,点边上,且交于点

1)如果,那么请用来表示

2)在原图中求作向量方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2

查看答案和解析>>

同步练习册答案