【题目】如图,为测量瀑布的高度,测量人员在瀑布对面山上的点处测得瀑布顶端点的仰角是,测得瀑布底端点的俯角是,与水平面垂直.又在瀑布下的水平面测得,(注:、、三点在同一直线上,于点),斜坡,坡角,那么瀑布的高度约为( ).(精确到,参考数据:,,,,,,)
A.
【答案】B
【解析】
如图,作DM⊥AB于M,DN⊥EF于N,在Rt△DCN中,求出CN即可得到FN的长,由四边形DMFN是矩形可得DM的长,然后分别在Rt△ADM和Rt△DMB中,解直角三角形求出AM,BM即可解决问题.
解:如图,作DM⊥AB于M,DN⊥EF于N,
在Rt△DCN中,CN=CDcos40°≈20.0×0.77=15.4(米),
∵CF=CG+GF=44.6(米),
∴FN=CN+CF=60.0(米),
易得四边形DMFN是矩形,
∴DM=FN=60.0(米),
在Rt△ADM中,AM=DMtan30°=(米),
在Rt△DMB中,BM=DMtan10°≈60.0×0.18=10.8(米),
∴AB=AM+BM=45.4(米),即瀑布的高度约为45.4米,
故选:B.
科目:初中数学 来源: 题型:
【题目】定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2+bx+c经过(﹣2,0)、(﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax2+ex+f经过点(﹣3,3).
(1)求b、c及a的值;
(2)已知抛物线y=﹣x2+2x+3与抛物线yn=x2﹣x﹣n(n为正整数)
①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.
②当直线y=x+m与抛物线y、yn,相交共有4个交点时,求m的取值范围.
③若直线y=k(k<0)与抛物线y=﹣x2+2x+3与抛物线yn =x2﹣x﹣n (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB=BC=CD时,求出k、n之间的关系式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知函数的图像和反比例函数的在第一象限交于A点,其中点A的横坐标是1.
(1)求反比例函数的解析式;
(2)把直线平移后与轴相交于点B,且,求平移后直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91
初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74
(1)整理、描述数据:
成绩 | |||||
初一(频数) | 1 | 2 | 3 | 6 | |
初二(频数) | 0 | 1 | 9 | 3 | 7 |
(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格)
分析数据:
平均数 | 中位数 | 众数 | |
初一 | 84 | 89 | |
初二 | 84 | 81.5 |
请根据上述的数据,填空:______;______;______;
(2)得出结论:
你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的曲边三角形可按下述方法作出:作等边三角形;分别以点,,为圆心,以的长为半径作,,.三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为,那么这个曲边三角形的面积是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AD∥BC,∠B=90°,AD=BC=20,AB=8,动点P从点B出发,先以每秒2cm的速度沿B→A的方向运动,到达点A后再以每秒4cm的速度沿A→D的方向向终点D运动;动点Q从点B出发以每秒2cm的速度沿B→C的方向向终点C运动.其中一个动点到达终点时,另一个动点也随之停止运动,设点P、Q同时出发,运动时间为t秒.
(1)直接写出BQ的长(用含t的代数式表示)
(2)求△BPQ的面积S(用含t的代数式表示)
(3)求当四边形APCQ为平行四边形t的值
(4)若点E为BC中点,直接写出当△BEP为等腰三角形时t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com