分析 (1)由平行线的性质结合题目条件可得∠AFG=∠FGC=∠BFE=∠DGH,则可求得∠GFE=∠HGF,可证明EF∥GH;
(2)结合条件可知∠AFG=∠BFE,∠AGF=∠DGH,由∠A=90°,可求得∠AFG+∠AGF=90°,结合平角的定义可得∠FGH+∠GFE=180°,可证得EF∥GH.
解答 (1)证明:
由题意可知∠AFG=∠BFE,∠DGH=∠CGF,
∵AB∥CD,
∴∠AFG=∠CGF,
∴∠AFG=∠BFE=∠DGH=∠CGF,
∵∠GFE=180°-2∠AFG,∠FGH=180°-2∠CGF,
∴∠GFE=∠FGF,
∴EF∥GH;
(2)解:EF∥GH.理由如下:
由题意可知∠AFG=∠BFE,∠AGF=∠DGH,
∵∠A=90°,
∴∠AFG+∠AGF=90°,
∵∠GFE=180°-2∠AFG,∠FGH=180°-2∠AGF,
∴∠GFE+∠FGH=360°-2(∠AFG+∠AGF)=360°-180°=180°,
∴EF∥GH.
点评 本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补,④a∥b,b∥c⇒a∥c.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 若ab=0,则点P(a,b)表示原点 | |
| B. | 点(1,-a2)在第四象限 | |
| C. | 已知点A(2,3)与点B(2,-3),则直线AB平行x轴 | |
| D. | 坐标轴上的点不属于任何象限 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com