精英家教网 > 初中数学 > 题目详情

【题目】数轴上OA两点的距离为4,一动点PA点出发按以下规律跳动:第一次跳动到AO的中点A1处,第二次从A1点跳动到A1O的中点A2处,第三次从A2跳动到A2O的中点A3处按照这样的规律,继续跳动到点A4A5A6……Ann≥3n是整数)处那么线段A3O的长度为_________AnA的长度为_________

【答案】

【解析】

根据题意,得第一次跳动到OA的中点A1处,即在离原点的长度为,第二次从A1点跳动到A2处,即在离原点的长度为,第三次从A2点跳动到A3处,即在离原点的长度为(由此可填第一个空),则跳动n次后,即跳到了离原点的长度为 ,再根据线段的和差关系可得线段AnA的长度,可填第二个空.

A1O=AO=A2O=A3O=A3O=A2O=

结合上述规律,容易发现:AnO=

所以:AnA=AO-AnO=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的立杆上点T处汇合.如图所示为截面图,以水平方向为x轴,喷水池中心为原点建立直角坐标系

(1)求水柱所在抛物线(第一象限部分)的函数解析式

(2)正在喷水时,身高1.8米的人,应站在离水池中心多远的地方就能不被淋湿?

(3)在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心的立杆上点T处汇合,请探究扩建后喷水池水柱的最大高度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市郊外景区内一条笔直的公路a经过三个景点ABC,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km

1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km

2)求景点C与景点D之间的距离.(结果精确到1km

(参考数据: =1.73 =2.24sin53°=cos37°=0.80sin37°=cos53°=0.60tan53°=1.33tan37°=0.75sin38°=cos52°=0.62sin52°=cos38°=0.79tan38°=0.78tan52°=1.28sin75°=0.97cos75°=0.26tan75°=3.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数图象的顶点坐标为(38),该二次函数图象的对称轴与x轴的交点为AM是这个二次函数图象上的点,O是原点.

1)不等式b+2c+8≥0是否成立?请说明理由;

2)设SAMO的面积,求满足S=9的所有点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,点DE分别是边ABAC的中点,点FBC边上,连接DEDFEF,则添加下列哪一个条件后,仍无法判断△FCE△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的个数是 ( )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线交于点,点,与轴交于点.

1)求的值和抛物线的解析式;

2)直接写出方程的解;

3)点是抛物线对称轴上的一个动点,当的值最小时,判断的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】红和小华都想去参加学校组织的演讲比赛,但现在名额只有一个,于是小英想出了一个办法:让小红和小华分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被四等分),在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则小红去;若指针所指的两个数字之和为奇数,则小华去,你认为这个方法公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,抛物线的顶点在线段上运动(抛物线随顶点一起平移),与轴交于两点(的左侧),点的横坐标最小值为-6,则点的横坐标最大值为(

A.-3B.1C.5D.8

查看答案和解析>>

同步练习册答案