【题目】(知识背景)
我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.
1.(问题初探)
如图(1),△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连接AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连接BE,猜想BE和CD有怎样的数量关系,并说明理由.
2.(类比再探)
如图(2),△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连接BE,则∠EBD=________.(直接写出答案,不写过程,但要求作出辅助线)
3.(方法迁移)
如图(3),△ABC是等边三角形,点D是BC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BE、BC之间有怎样的数量关系?________(直接写出答案,不写过程).
4.(拓展创新)
如图(4),△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.
【答案】【问题初探】BE=CD,理由见解析;【类比再探】,如图所示,理由见解析;【方法迁移】BE=CD,理由见解析;【拓展创新】,理由见解析
【解析】
1.【问题初探】根据已知条件易证得,从而得到结论;
2.【类比再探】根据四点共圆的判定和性质,即可得到结论;
3.【方法迁移】根据已知条件易证得,从而得到结论;
4.【拓展创新】根据四点共圆的判定和性质,即可得到结论.
1.【问题初探】BE=CD,理由是:
∵∠EAD=∠BAC=90,即:∠1+∠BAD=∠2+∠BAD=90,
∴∠1=∠2
又∵AD=AE,AB=AC,
∴,
∴BE=CD;
2.【类比再探】,如图所示:
∵与都是等腰直角三角形,
∴∠MED=∠MBD=45,
∴B、D、M、E四点共圆,
根据圆内接四边形对角互补,
∠EBD=180-∠EMD,
故答案是:;
3.【方法迁移】BE=CD,理由是:
∵∠EAD=∠BAC=60,即:∠1+∠BAD=∠2+∠BAD=60,
∴∠1=∠2
又∵AD=AE,AB=AC,
∴,
∴BE=CD;
4.【拓展创新】,理由是:
∵与都是等边三角形,
∴∠MED=∠MBD=60,
∴B、D、M、E四点共圆,如图所示:
根据圆内接四边形对角互补,
∠EBD=180-∠EMD,
故答案是:
科目:初中数学 来源: 题型:
【题目】定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的传统文化项目类型频数分布表
根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直角△ABC中,∠C=90°,∠A=30°,AB=4,以AC为腰,在△ABC外作顶角为30°的等腰三角形ACD,连接BD.请画出图形,并直接写出△BCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,连接BM,CD.且B,M,D三点共线
(1)当点D,点M在BC边下方,CD<BD时,如图①,求证:BM+CD=AM;(提示:延长DB到点N,使MN=MD,连接AN.)
(2)当点D在AC边右侧,点M在△ABC内部时,如图②;当点D在AB边左侧,点M在△ABC外部时,如图③,请直接写出线段BM,CD,AM之间的数量关系,不需要证明;
(3)在(1),(2)条件下,点E是AB中点,MF是△AMD的角平分线,连接EF,若EF=2MF=6,则CD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、A、F三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.
己知:______________________________________________________.
求证:______________________________________________________.
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-5,5),(-2,3).
(1)请在图中的网格平面内画出平面直角坐标系xOy;
(2)请画出△ABC关于y轴对称的△A1B1C1,并写出顶点A1,B1,C1的坐标
(3)请在x轴上求作一点P,使△PB1C的周长最小.请标出点P的位置(保留作图痕迹,不需说明作图方法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图△ABC和△CDE均为等边三角形,B、C、D三点在同一条直线上,连接线段BE、AD交于点F,连接CF,
(1)求证:∠FBC=∠FAC.
(2)求∠BFC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com