【题目】如图,在矩形ABCD中,∠ACB=30°,过点D作DE⊥AC于点E,延长DE交BC于点F,连接AF,若AF=,线段DE的长为_____.
【答案】.
【解析】
由直角三角形的性质得出CD=CF,设CF=x,则AB=x,BC=3x,则BF=2x,利用勾股定理求出x,再证明△ADE∽△CFE,然后理由相似的性质求出CD即可.
解:∵四边形ABCD是矩形,
∴AD∥BC,∠ADC=∠B=∠BCD=90°,AB=CD,AD=BC,AD∥BC,
∴∠DAC=∠ACB=30°,
∴AD=CD,∠DCE=60°,
∵DF⊥AC,
∴EF=CF,∠CDF=30°,
∴CD=CF,
设CF=x,则AB=CD=x,BC=AD=CD=3x,
∴BF=BC﹣CF=3x﹣x=2x,
在Rt△ABF中,由勾股定理得:(x)2+(2x)2=()2,
解得:x=,
∴CF=,EF=,AD=3,
∵AD∥BC,
∴△ADE∽△CFE,
∴=,即=,
∴DE=;
故答案为:.
科目:初中数学 来源: 题型:
【题目】设中学生体质健康综合评定成绩为分,满分为100分,规定:为级;为级;为级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生,级人数占本次抽取人数的百分比为 ;
(2)扇形统计图中级对应的圆心角为 度;
(3)若该校共有1000名学生,请你估计该校级学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=8,sin A=
(1)求AB的长;
(2)若点E在Rt△ABC的直角边上,点F在斜边AB上,当△CFE∽△ABC时,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.
(1)求从这五名翻译中随机挑选一名会翻译英语的概率;
(2)若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长和宽分别是19和15矩形内,如图所示放置5个大小相同的正方形,且A、B、C、D四个顶点分别在矩形的四条边上,则每个小正方形的边长是( )
A.B.5.5C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,函数(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.
(1)求∠OCD的度数;
(2)如图2,连接OQ、OP,当∠DOQ=∠OCD-∠POC时,求此时m的值;
(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com