【题目】我们规定:若抛物线的顶点在坐标轴上,则称该抛物线为“数轴函数”例如抛物线y=x2和y=(x-1)2都是“数轴函数”.
(1)抛物线y=x2-4x+4和抛物线y=x2-6x是“数轴函数“吗?请说明理由;
(2)若抛物线y=2x2+4mx+m2+16是“数轴函数”,求该抛物线的表达式
【答案】(1)抛物线是“数轴函数”,抛物线不是“数轴函数”,理由见解析;(2)或或.
【解析】
(1)根据“数轴函数”的定义解答即可;
(2)配成顶点式,根据“数轴函数”的定义分两种情况讨论:顶点在x轴上,顶点在y轴上.
(1)抛物线是“数轴函数”,抛物线不是“数轴函数”.理由如下:
∵,
∴抛物线的顶点坐标为,在轴上,
∴抛物线是“数轴函数”;
∵,
∴抛物线的顶点坐标为,在第四象限,
∴抛物线不是“数轴函数”.
(2),
顶点坐标为.
由于抛物线是“数轴函数”,分两种情况:
①当顶点在轴上时,,解得:,
抛物线的表达式为或;
②当顶点在轴上时,,解得:,抛物线的表达式为.
综上所述:抛物线的表达式为或或.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数与轴交于、两点(点在点左),与轴交于点,连接,点为二次函数图象上的动点.
(1)若的面积为3,求抛物线的解析式;
(2)在(1)的条件下,若在轴上存在点,使得,求点的坐标;
(3)若为对称轴右侧抛物线上的动点,直线交轴于点,直线交轴于点,判断的值是否为定值,若是,求出定值,若不是请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,点,点.
(1)画出关于轴的对称图形,并写出点的对称点的坐标;
(2)若点在轴上,连接、,则的最小值是 ;
(3)若直线轴,与线段、分别交于点、(点不与点重合),若将沿直线翻折,点的对称点为点,当点落在的内部(包含边界)时,点的横坐标的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.
(1)如图1,当∠PAB=45°,AB=6时,AC= ,BC= ;如图2,当sin∠PAB=,AB=4时,AC= ,BC= ;
(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(x1,y1)、B(x2,y2)在二次函数y=x2+mx+n的图像上,当x1=1、x2=3时,y1=y2.
(1)若P(a,b1),Q(3,b2)是函数图象上的两点,b1>b2,则实数a的取值范围是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若抛物线与x轴只有一个公共点,求二次函数的表达式.
(3)若对于任意实数x1、x2都有y1+y2≥2,则n的范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的( )
A.只有①②③B.只有①②④C.①②③④D.只有③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.
(1)用a表示k,并求L的对称轴;
(2)当L经过点(4,﹣7)时,求此时L的表达式及其顶点坐标;
(3)横,纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;
(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级男生共250人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.设学生引体向上测试成绩为x(单位:个).学校规定:当0≤x<2时成绩等级为不及格,当2≤x<4时成绩等级为及格,当4≤x<6时成绩等级为良好,当x≥6时成绩等级为优秀.样本中引体向上成绩优秀的人数占30%,成绩为1个和2个的人数相同.
(1)补全统计图;
(2)估计全校九年级男生引体向上测试不及格的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们常见的汽车玻璃升降器如图①所示,图②和图③是升降器的示意图,其原理可以看作是主臂PB绕固定的点O旋转,当端点P在固定的扇形齿轮上运动时,通过叉臂式结构(点B可在MN上滑动)的玻璃支架MN带动玻璃沿导轨作上下运动而达到玻璃升降目的.点O和点P,A,B在同一直线上.当点P与点E重合时,窗户完全闭合(图②),此时∠ABC=30°;当点P与点F重合时,窗户完全打开(图③).已知的半径OP=5cm,=cm,OA=AB=AC=20cm.
(1)当窗户完全闭合时,OC=_____cm.
(2)当窗户完全打开时,PC=_____cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com