【题目】三位女同学竞选学校即将组织的“中国梦,我的梦”文艺演出女主持人,它们的笔试成绩和口试成绩、形象得分,分别如下:
笔试 | |||
口试 | |||
形象 | |||
平均分 |
(1)① ;
②在表格中的个数的中位数是 ,众数是
(2)经学校研究决定,在两位同学中选一位.评比方法:按笔试成绩:口试成绩:形象得分进行计算,得分最高的同学为本次文艺演出的女主持人.请你算一算哪位同学最后被选为本次文艺演出的女主持人?
科目:初中数学 来源: 题型:
【题目】某校为了解学生零用钱支出情况,从七、八、九年级800名学生中随机抽取部分学生,对他们今年5月份的零用钱支出情况进行调查统计,并绘制成如下统计图表:
组别 | 零用钱支出x(单位:元) | 频数(人数) | 频率 | |
节俭型 | 一 | x<20 | m | 0.05 |
二 | 20≤x<30 | 4 | a | |
富足型 | 三 | 30≤x<40 | n | 0.45 |
四 | 40≤x<50 | 12 | b | |
奢侈型 | 五 | x≥50 | 4 | c |
合计 | 1 |
(1)表中a+b+c= ;m= ;本次调查共随机抽取了 名同学;
(2)在扇形统计图中,“富足型”对应的扇形的圆心角的度数是 ;
(3)估计今年5月份全校零花钱支出在30≤x<40范围内的学生人数;
(4)在抽样的“奢侈型”学生中,有2名女生和2名男生.学校团委计划从中随机抽取2名同学参加“绿苗理财计划”活动,请运用树状图或者列表说明恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图①,是等腰直角三角形,四边形是正方形,点与点重合,则线段与之间的数量关系和位置关系分别是 .
(2)深入探究
如图②,是等腰直角三角形,四边形是正方形,点在直线上,对角线所在的直线交直线于点,则线段之间有什么数量关系?请仅就图②给出证明.
(3)拓展思维
如图②,若点在直线上,且线段,当时,直接写出此时正方形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,,于点D,于点E,交AD于点F,点M是BC的中点,连接FM并延长交AB的垂线BH于点H.下列说法中错误的是( )
A.若,则
B.若,则
C.若(点M与点D重合),则
D.若(点B与点D重合),则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种植户计划将一片荒山改良后种植沃柑,经市场调查得知,当种植沃柑的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系:y=kx+b,并且当x=20时,y=1800;当x=25时,y=1700.
(1)请求出y与x的函数关系式,并写出自变量的取值范围;
(2)设种植户种植x亩沃柑所获得的总利润为w元,由于受条件限制,种植沃柑面积x不超过50亩,求该种植户种植多少亩获得的总利润最大,并求总利润w(元)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是半圆的直径,,射线为半圆的切线.在上取一点,连接交半圆于点,连接.过点作,垂足为点,与相交于点.过点作半圆的切线,切点为,与相交于点.
(1)求证:;
(2)当与的面积相等时,求的长;
(3)求证:当在上移动时(点除外),点始终是线段的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】疫情期间,口罩供不应求.某口罩企业为指导生产,在二月份期间对甲乙丙丁四条生产线日产量进行调研,根据调研数据,绘制出如下两幅不完整的统计图.观察统计图,请解答以下问题:
(1)求二月份该企业口罩单日产量(二月份计天).
(2)求乙条生产线单日产量是多少,并补全频数分布直方图.
(3)为满足市场需求,该公司改进生产技术,使得口罩产量在二月的基础上逐月提高,已知月份口罩产量为万只,若三月份和四月份口罩月产量平均增长率相同,求每月的平均增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水产养殖户开发一个三角形状的养殖区域,A、B、C三点的位置如图所示.已知∠CAB=105°,∠B=45°,AB=100米.(参考数据:≈1.41,≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,结果保留整数)
(1)求养殖区域△ABC的面积;
(2)养殖户计划在边BC上选一点D,修建垂钓栈道AD,测得∠CAD=40°,求垂钓栈道AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F, 已知OB=8.
(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P, Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com