【题目】如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F, 已知OB=8.
(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P, Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.
【答案】(1)证明见解析;(2)48;(3)点P的坐标为(12,0),(24,0),(,0),(,0),(16,0)
【解析】
(1)结合正方形性质求得△ACE≌△ABD,从而得到AE=AD,根据邻边相等的平行四边形是菱形证明即可.
(2)连接DE,求出△ADE的面积即可解决问题.
(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.
(1)∵DF∥AE,EF∥AD,
∴四边形AEFD是平行四边形.
∵四边形ABOC是正方形,
∴OB=OC=AB=AC,∠ACE=∠ABD=90°.
∵点D,E是OB,OC的中点,
∴CE=BD,
∴△ACE≌△ABD(SAS),
∴AE=AD,
∴是菱形
(2)如图1,连结DE
∵S△ABD=AB·BD=, S△ODE=OD·OE=,
∴S△AED=S正方形ABOC-2 S△ABD- S△ODE=64-2-8=24,
∴S菱形AEFD=2S△AED=48
(3)由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3
1)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:
如图2,AG与PQ交于点H,
∵菱形PAQG∽菱形ADFE,
∴△APH的两直角边之比为1:3
过点H作HN⊥x轴于点N,交AC于点M,设AM=t
∵HN∥OQ,点H是PQ的中点,
∴点N是OP中点,
∴HN是△OPQ的中位线,
∴ON=PN=8-t
又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,
∴△HMA∽△PNH,
∴== ,
∴HN=3AM=3t,
∴MH=MN-NH=8-3t.
∵PN=3MH,
∴8-t =3(8-3t),解得t=2
∴OP=2ON=2(8-t)=12
∴点P的坐标为(12,0)
如图3,△APH的两直角边之比为1:3
过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M
∵∠1=∠3=90°-∠2,∠AMH=∠PNH,
∴△AMH∽△HNP,
∴==,设MH=t,
∴PN=3MH=3t,
∴AM=BM-AB=3t-8,
∴HN=3AM=3(3t-8) =9t-24
又∵HI是△OPQ的中位线,
∴OP=2IH,
∴HI=HN,
∴8+t=9t-24,解得 t=4
∴OP=2HI=2(8+t)=24,
∴点P的坐标为(24,0)
2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:
如图4,△PQH的两直角边之比为1:3
过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N
∵MH是△QAC的中位线,
∴HM==4
又∵∠1=∠3=90°-∠2,∠HMQ=∠N,
∴△HPN∽△QHM,
∴==,则PN==,
∴OM=
设HN=t,则MQ=3t
∵MQ=MC,
∴3t=8-,解得t=
∴OP=MN=4+t=,
∴点P的坐标为(,0)
如图5,△PQH的两直角边之比为1:3
过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N
∵IH是△ACQ的中位线,
∴CQ=2HI,NQ=CI=4
∵∠1=∠3=90°-∠2,∠PMH=∠QNH,
∴△PMH∽△HNQ,
∴===,则MH=NQ=
设PM=t,则HN=3t,
∵HN=HI,
∴3t=8+,解得 t=
∴OP=OM-PM=QN-PM=4-t=,
∴点P的坐标为(,0)
3)当AP为菱形对角线时,有图6一种情况:
如图6,△PQH的两直角边之比为1:3
过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N
∵HI∥x轴,点H为AP的中点,
∴AI=IB=4,
∴PN=4
∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,
∴△PNH∽△HMQ,
∴===,则MH=3PN=12,HI=MH-MI=4
∵HI是△ABP的中位线,
∴BP=2HI=8,即OP=16,
∴点P的坐标为(16,0)
综上所述,点P的坐标为(12,0),(24,0),(,0),(,0),(16,0).
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC、BD相交于点O,AB=5,AC=6,AC的平行线DE交BC的延长线于点E,则四边形ACED的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为( )
A.8.5B.15C.17D.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线C:y=x[a(x﹣1)+x+1](a为任意实数).
(1)无论a取何值,抛物线C恒过定点 , .
(2)当a=1时,设抛物线C在第一象限依次经过的整数点(横、纵坐标均为整数的点)为A1,A2,……An,将抛物线C沿着直线y=x(x≥0)平移,将平移后的抛物线记为C n,抛物线C n经过点An,C n的顶点坐标为Mn(n为正整数且n=1,2,…,n,例如n=1时,抛物线C1经过点A1,C1的顶点坐标为M1).
①抛物线C2的解析式为 ,顶点坐标为 .
②抛物线C1上是否存在点P,使得PM1∥A2M2?若存在,求出点P的坐标,并判断四边形PM1M2A2的形状;若不存在,请说明理由.
③直接写出Mn﹣1,Mn两顶点间的距离: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____ cm.
(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.
(1)求证:ABM∽ECA.
(2)当CM=4OM时,求BM的长.
(3)当CM=kOM时,设ADE的面积为, MCD的面积为,求的值(用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.
(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线交坐标轴于两点,抛物线经过两点,且交轴于另一点.点为第一象限内抛物线上一动点,过点作交于点,交轴于点.
(1)求抛物线的解析式;
(2)设点的横坐标为在点移动的过程中,存在求出此时的值;
(3)在抛物线上取点在坐标系内取点问是否存在以为顶点且以为边的矩形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com