【题目】如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.
(1)写出D点坐标;
(2)求双曲线的解析式;
(3)作直线AC交y轴于点E,连结DE,求△CDE的面积.
【答案】(1)点D的坐标是(1,2);(2)双曲线的解析式是:y=;(3)△CDE的面积是3.
【解析】
(1)根据平行四边形对边相等的性质,将线段长度转化为点的坐标即可;
(2)求出点的坐标后代入反比例函数解析式求解即可;
(3)观察图形,可用割补法将分成与两部分,以为底,分别以到的距离和到的距离为高求解即可.
解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),
∴点D的坐标是(1,2),
(2)∵双曲线y=(k≠0,x>0)过点D(1,2),
∴2=,得k=2,
即双曲线的解析式是:y=;
(3)∵直线AC交y轴于点E,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),点D的坐标是(1,2),
∴AD=2,点E到AD的距离为1,点C到AD的距离为2,
∴S△CDE=S△EDA+S△ADC==1+2=3,
即△CDE的面积是3.
科目:初中数学 来源: 题型:
【题目】一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)请直接写出满足kx+b>的x的取值范围;
(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=3,OB=4,求OD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)
(2)如果AM=1,sin∠DMF=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求△ABC的面积;
(3)抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是⊙O的直径,AB是⊙O的弦,CD⊥AB,垂足为E,连接BC、BD.点F为线段CB上一点,连接DF,若CE=2,AB=8,BF=,则tan∠CDF=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如下表所示:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求这个二次函数的表达式;
(2)在给定的平面直角坐标系中画出这个二次函数的图象;
(3)当4<x<1时,直接写出y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com