【题目】按要求解一元二次方程:
(1)2x2﹣3x+1=0(配方法)
(2)x(x﹣2)+x﹣2=0(因式分解法)
科目:初中数学 来源: 题型:
【题目】点P到图形Ω(可以是线段、三角形、圆或不规则图形等)的距离是指:点P与图形Ω中所有点连接的线段中最短线段的长度.如图①中的两个虚线段PQ的长度都表示点P到图形Ω的距离.
如图②,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为,点P从原点出发,以每秒1个单位长度的速度向x轴的正方向运动了t秒.
(1)当t=0时,求点P到△ABC的距离;
(2)当点P到△ABC的距离等于线段AP的长度时,求t的范围;
(3)当点P到△ABC的距离大于时,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(m﹣2)x2+2mx+m+3与x轴有两个交点.
(1)求m的取值范围;
(2)当m取满足条件的最大整数时,求抛物线与x轴有两个交点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的对称轴为,与轴的一个交点在和之间,其部分图像如图所示,则下列结论:①点,,是该抛物线上的点,则;②;③(为任意实数).其中正确结论的个数是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.
(1)求该二次函数的解析式及点,的坐标;
(2)点是轴上的动点,
①求的最大值及对应的点的坐标;
②设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点的坐标分别为A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)画出△ABC关于x轴对称的△ADE(其中点B,C的对称点分别为点D、E);
(2)画出△ABC关于原点成中心对称的△FGH(其中A、B、C的对称点分别为点F,G,H).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有( )
A. 2条 B. 4条 C. 5条 D. 6条
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com