【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地的距离是 千米;
(2)两车行驶多长时间相距300千米?
(3)求出两车相遇后y与x之间的函数关系式.
【答案】(1)600;(2)两车2或6小时时,两车相距300千米;
(3)y与x的函数关系式为y=
【解析】
(1)由图象容易得出答案;
(2)分别求出求快车和慢车的速度,分两种情况,由题意得出方程,解方程即可;
(3)求出相遇的时间和慢车行驶的路程,即可得出答案.
解:(1)由图象得:甲乙两地相距600千米;
故答案为:600;
(2)由题意得:慢车总用时10小时,
∴慢车速度为(千米/小时);
设快车速度为x千米/小时,
由图象得:60×4+4x=600,
解得:x=90,
∴快车速度为90千米/小时;
设出发x小时后,两车相距300千米.
①当两车没有相遇时,
由题意得:60x+90x=600﹣300,解得:x=2;
②当两车相遇后,
由题意得:60x+90x=600+300,解得:x=6;
即两车2或6小时时,两车相距300千米;
(3)由图象得:(小时),60×=400(千米),
时间为小时时快车已到达甲地,此时慢车走了400千米,
∴两车相遇后y与x的函数关系式为y=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形AOCB的顶点A(m,n)和C(p,q)在坐标轴上,已知和都是方程x+2y=4的整数解,点B在第一象限内.
(1)求点B的坐标;
(2)若点P从点A出发沿y轴负半轴方向以1个单位每秒的速度运动,同时点Q从点C出发,沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ面积为长方形ABCO面积的一半;
(3)如图2,将线段AC沿x轴正方向平移得到线段BD,点E(a,b)为线段BD上任意一点,试问a+2b的值是否变化?若变化,求其范围;若不变化,求其值.(直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试了一种辅助线,如图1,图2所示,其中辅助线做法能够用来证明三角形中位线定理的是( )
A. 小丽和小亮的辅助线做法都可以
B. 小丽和小亮的辅助线做法都不可以
C. 小丽的辅助线做法可以,小亮的不可以
D. 小亮的辅助线做法可以,小丽的不可以
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC摆放在平面直角坐标系中,点A在轴上,点C在轴上,OA=8,OC=6.
(1)求直线AC的表达式
(2)若直线与矩形OABC有公共点,求的取值范围;
(3)若点O与点B位于直线两侧,直接写出的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正三角形ABC的边长为3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在边AB上,点P、N分别在边CB、CA上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为( )
A. B. C. 3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是的直径,点D是半径OA的中点,过点D作CD⊥AB,交于点C,点E为弧BC的中点,连结ED并延长ED交于点F,连结AF、BF,则( )
A. sin∠AFE=B. cos∠BFE=C. tan∠EDB=D. tan∠BAF=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com