分析 图2,根据平行线求出∠DGF=∠ECF,∠GDF=∠E,根据AAS推出△DFG≌△EFC,根据全等三角形的性质得出DG=CE,求出BD=DG,求出∠B=∠ACB即可;
图3,根据平行线的性质得出∠B=∠H,根据AAS推出△BDF≌△HEF,根据全等三角形的性质得出EH=BD,求出∠B=∠ACB即可.
解答 证明:图2,∵DG∥AE,
∴∠DGF=∠ECF,∠GDF=∠E,
∵F点是DE的中点,
∴DF=EF,
∵在△DFG和△EFC中
$\left\{\begin{array}{l}{∠DGF=∠ECF}\\{∠GDF=∠E}\\{DF=EF}\end{array}\right.$
∴△DFG≌△EFC(AAS),
∴DG=CE,
∵BD=CE,
∴BD=DG,
∴∠B=∠DGB,
∵DG∥AE,
∴∠DGB=∠ACB,
∴∠B=∠ACB,
∴AB=AC;
图3,∵EH∥AB,
∴∠B=∠H,
在△BDF和△HEF中
$\left\{\begin{array}{l}{∠DFB=∠EFH}\\{∠B=∠H}\\{DF=EF}\end{array}\right.$
∴△BDF≌△HEF(AAS),
∴EH=BD,
∵BD=CE,
∴CE=EH,
∴∠H=∠HCE,
∵∠H=∠B,∠HCE=∠ACB,
∴∠B=∠ACB,
∴AB=AC.
点评 本题考查了全等三角形的性质和判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4cm | B. | 6cm | C. | 8cm | D. | 10cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{7}$(1+k)2=1 | B. | $\frac{4}{7}$k+$\frac{4}{7}$k2=1 | C. | $\frac{4}{7}$+$\frac{4}{7}$k+$\frac{4}{7}$k2=1 | D. | $\frac{4}{7}$+$\frac{4}{7}$(1+k)2=1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 6 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com