精英家教网 > 初中数学 > 题目详情
6.如图,在正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,tan∠FCB=2,则FG=5$\sqrt{2}$.

分析 首先连接CG,首先证明△CGD≌△CEB,得到△GCE是等腰直角三角形;过点H作AB、BC的垂线,垂足分别为点M、N,进而证明△HEM≌△HCN,得到四边形MBNH为正方形,由此求出CH、HN、CN的长度;最后利用相似三角形Rt△HCN∽Rt△GFH,求出FG的长度.

解答 解:连接CG.
在△CGD与△CEB中,
$\left\{\begin{array}{l}{BE=DG}\\{∠EBC=∠GDC=90°}\\{BC=DC}\end{array}\right.$,
∴△CGD≌△CEB(SAS),
∴CG=CE,∠GCD=∠ECB,
∴∠GCE=90°,即△GCE是等腰直角三角形.
又∵CH⊥GE,
∴CH=EH=GH.
过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,
又∵∠EHC=90°,
∴∠1=∠2,
∴∠HEM=∠HCN.
在△HEM与△HCN中,
$\left\{\begin{array}{l}{∠1=∠2}\\{EH=CH}\\{∠HEM=∠HCN}\end{array}\right.$,
∴△HEM≌△HCN(ASA).
∴HM=HN,
∴四边形MBNH为正方形.
∵BH=8,
∴BN=HN=4$\sqrt{2}$,
∵tan∠FCB=$\frac{HN}{CN}$=2,
∴CN=2$\sqrt{2}$.
在Rt△HCN中,CH=$\sqrt{H{N}^{2}+C{N}^{2}}$=2$\sqrt{10}$.
∴GH=CH=2$\sqrt{10}$.
∵HM∥AG,
∴∠1=∠3,
∴∠2=∠3.
又∵∠HNC=∠GHF=90°,
∴Rt△HCN∽Rt△GFH.
∴$\frac{CH}{FG}=\frac{HN}{GH}$,即$\frac{2\sqrt{10}}{FG}=\frac{4\sqrt{2}}{2\sqrt{10}}$,
∴FG=5$\sqrt{2}$.
故答案为:5$\sqrt{2}$.

点评 本题是几何综合题,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知识点,难度较大.作出辅助线构造全等三角形与相似三角形,是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.若$\sqrt{x-1}$-$\sqrt{1-x}$=(x+y)2,则x=1,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知直线y=kx+b经过点(0,6),且平行于直线y=-2x.
(1)求该函数解析式;
(2)如果这条直线经过点P(m,2),求直线y=kx+b和直线OP与x轴所围成的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB=AD,AC=AE,∠1=∠2,则下列正确结论有(1)(2)(4)(只填序号).
(1)△ABC≌△ADE;(2)CM=EN;(3)OC∥AD;(4)S△EOM+S△ABM=S△CON+S△AND

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,已知直线AB、CD相交于点O,OE、OF分别是∠AOC、∠BOD的角平分线,射线OE、OF在同一条直线上吗?为什么?
答:射线OE、OF在同一条直线上.
证明:∵OE、OF分别平分∠AOC、∠BOD,
∴∠EOC=$\frac{1}{2}$∠AOC,
∠FOD=$\frac{1}{2}$∠BOD.角平分线的定义
∵直线AB、CD相交于O,
∴∠COD=180°,平角的定义
∠AOC=∠BOD,对顶角相等
∴∠EOC=∠FOD.
∵∠COD=∠COB+∠BOF+∠FOD=180°.
∴∠COB+∠BOF+∠EOC=180°,等量代换
即∠EOF=180°.
∴射线OE、OF在同一条直线上.共线的判定.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,有一块塑料矩形模板ABCD,AB=5cm,AD=2cm,将足够大的直角三角形PHF的直角顶点P落在CD边上(不与C、D重合),在CD上适当移动三角板顶点P,使直角边PH始终通过点A,另一直角边PF与CB的延长线交于点Q,与AB交于点M.若BM=1cm,则DP=2 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列命题正确的是(  )
A.若两条弧的长相等,则这两条弧是等弧
B.两条弧的长相等,它们所对的圆心角也相等
C.两个相等的圆心角所对的两条弧的长相等
D.如果两个圆的周长相等,那么它们的半径也相等

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,直线y=$\frac{1}{2}$x+1与x轴、y轴分别交于点C、D,以线段OD为直角边作等腰Rt△DOC1,过点C1作C1D1⊥x轴交直线y=$\frac{1}{2}$x+1于点D1,又以C1D1为直角边作等腰Rt△D1C1C2,…按这样规律一直作下去,则Rt△D2013C2013C2014的腰长是(  )
A.$\frac{4025}{2014}$B.$\frac{{3}^{2012}}{{3}^{2013}}$C.$\frac{{3}^{2013}}{{3}^{2012}}$D.($\frac{3}{2}$)2013

查看答案和解析>>

同步练习册答案