分析 (1)先根据角平分线的性质得出∠CPE=∠DPE,再由OA∥PC得出∠POA=∠CPE,故∠DPE=∠POA,由此可得出结论;
(2)过点O作OD⊥AB于点D,由垂径定理可知AD=$\frac{1}{2}$AB,再由tan∠OPB=$\frac{1}{2}$可设OD=x,则PD=2x,由(1)知AP=AO,故AD=2x-10,在Rt△AOD中根据勾股定理求出x的值,继而可得出结论.
解答
(1)证明:∵PE平分∠CPD,
∴∠CPE=∠DPE.
∵OA∥PC,
∴∠POA=∠CPE,
∴∠DPE=∠POA,
∴AP=AO;
(2)解:过点O作OD⊥AB于点D,则AD=$\frac{1}{2}$AB,
∵⊙O的半径为10,tan∠OPB=$\frac{1}{2}$,
∴设OD=x,则PD=2x.
∵由(1)知AP=AO,
∴AD=2x-10,
在Rt△AOD中,
∵OD2+AD2=OA2,即x2+(2x-10)2=102,解得x=8,
∴AD=16-10=6,
∴AB=2AD=12.
点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com