精英家教网 > 初中数学 > 题目详情

【题目】如图,已知是圆的直径,点是圆上一点,与过点的切线垂直,垂足为点,直线的延长线相交于点,平分,交于点,连接

1)求证:平分

2)求证:是等腰三角形;

3)若,求圆的半径长.

【答案】(1)证明见解析;(2)证明见解析;(3) 的半径为.

【解析】

1)根据切线的性质得OCDP,而ADDP,则肯定判断OCAD,根据平行线的性质得∠DAC=OCA,加上∠OAC=OCA,所以∠OAC=DAC,即可求证.
2)根据圆周角定理由AB为圆O的直径得∠ACB=90°,则∠BCE=45°,再利用圆周角定理得∠BOE=2BCE=90°,则∠OFE+OEF=90°,易得∠CFP+OEF=90°,再根据切线的性质得到∠OCF+PCF=90°,而∠OCF=OEF,根据等角的余角相等得到∠PCF=CFP,于是可判断△PCF是等腰三角形;
3)连结OE.由AB O的直径,得到∠ACB=90°,根据角平分线的定义得到∠BCE=45°,设圆O的半径为r,则OF=6-r,根据勾股定理列方程即可得到结论.

(1)证明:∵为圆的切线,

//,

平分

(2)证明:∵是圆的直径,

平分∠

,

是等腰三角形;

(3)连结

是圆的直径,

平分∠,

,即

设圆的半径为,则

,

解得

,(符合题意)

,(不合题意,舍去)

∴圆的半径为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知O为坐标原点,AOB=30°ABO=90°,且点A的坐标为(2,0).

(1) 求点B的坐标;

(2) 若二次函数y=ax2+bx+c的图象经过ABO三点,求此二次函数的解析式;

(3) (2)中的二次函数图象的OB(不包括点OB)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.

(1)求两个路灯之间的距离;

(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,PCD边上一点(DP<CP),APB=90°.将ADP沿AP翻折得到AD′P,PD′的延长线交边AB于点M,过点BBNMPDC于点N.

(1)求证:AD2=DPPC;

(2)请判断四边形PMBN的形状,并说明理由;

(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BEAB,OEADBEE点,连接AE、DE、AECDF点.

(1)求证:DE为⊙O切线;

(2)若⊙O的半径为3,sinADP=,求AD;

(3)请猜想PFFD的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知abc满足a+c=b4a+c=-2b,抛物线y=ax+bx+ca0)过点A(-y1),By2,C3y3),则y1y2y3的大小关系为(

A. y2y1y3B. y3y1y2C. y2y3y1D. y1y2y3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CAB为直径的圆O上,AD与过点C的切线垂直,垂足为点DAD交圆O于点E.

1)求证:AC平分∠DAB

2)连接BE,若BE=6sinCAD=,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数的图象与x轴交于AB两点,其中A点坐标为,点,另抛物线经过点M为它的顶点.

求抛物线的解析式;

的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,连接OC,过点AADOC,交BC的延长线于DABOCE,∠ABC45°

(1)求证:AD是⊙O的切线;

(2)AECE3

①求⊙O的半径;

②求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案