【题目】的三边长分别为.
求的取值范围;
当的周长为偶数时,求;
若为等腰三角形,求.
【答案】(1)4<x<14;(2)x=6、8、10,12;(3)x=5或9.
【解析】
(1)根据三角形的第三边大于两边之差,而小于两边之和进行计算;
(2)要使周长是偶数,因为其它两边之和是13,则x应是奇数;
(3)根据等腰三角形的定义:有两边相等的三角形是等腰三角形,则x=4或9,再根据(1)中的取值范围进行取舍.
△ABC的三边长分别为5、9、x,
(1)根据三角形的第三边大于两边之差,而小于两边之和,得9-5<x<9+5,即4<x<14;
(2)因为已知的两边之和是14,为偶数,要使周长为偶数,则第三边应是偶数,即x=6、8、10,12;
(3)若△ABC为等腰三角形,x=5或9.
科目:初中数学 来源: 题型:
【题目】勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小月和小东在一起探究有关“多边形内角和”的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角度数之比为,求各个内角的度数.小东想了想,说:“这道题目有问题”.
(1)请你指出问题出在哪里;
(2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是( )
A.B.3S
C.4SD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为__米.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C所在位置的深度.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:所以2,26均为“麻辣数”.注:立方差公式
(1)请判断98和169是否为“麻辣数”,并说明理由;
(2)请求出在不超过2016的自然数中,所有的“麻辣数”之和为多少?写出完整的求解过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.
(1)求证:BE=BF;
(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com