【题目】如图,直线y= +3与坐标轴交于A、B两点,⊙O的半径为2,点P是⊙O上动点,△ABP面积的最大值为cm2 .
【答案】11
【解析】解:如图,
∵直线y= +3与坐标轴交于A、B两点,
∴A(﹣4,0),B(0,3),
∴OA=4,OB=3,
在Rt△AOB中,根据勾股定理得,AB=5,
∵△PAB中,AB=5是定值,
∴要使△PAB的面积最大,即⊙O上的点到AB的距离最大,
∴过点O作OC⊥AB于C,CO的延长线交⊙O于P,此时S△PAB的面积最大,
∴S△AOB= OAOB= ABOC,
∴OC= ,
∵⊙O的半径为2,
∴CP=OC+OP= ,
∴S△PAB= ABCP= ×5× =11.
所以答案是11.
【考点精析】通过灵活运用圆的定义和切线的性质定理,掌握平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.
科目:初中数学 来源: 题型:
【题目】某汽车行驶时油箱中余油量Q(升)与行驶时间t(小时)的关系如下表:
行驶时间t | 1 | 2 | 3 | 4 | … |
余油量Q | 40﹣6 | 40﹣12 | 40﹣18 | 40﹣24 | … |
(1)写出用行驶时间t表示余油量Q的代数式 ;
(2)当t=时,余油量Q的值为 升;
(3)汽车每小时行驶60公里,问油箱中原有汽油可供汽车行驶多少公里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是( )
A.2
B.2+
C.2
D.2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂线,交BC于P点,则P即为所求
(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求
对于两人的作法,下列判断何者正确?( )
A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.
(1)如图1,求证:CD⊥AB;
(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.
①如图2,若∠B=34°,求∠A′CB的度数;
②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;
(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;
(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9
(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com