精英家教网 > 初中数学 > 题目详情

【题目】1)在等边三角形中,

①如图①,分别是边上的点,且交于点,则的度数是___________度;

②如图②,分别是边延长线上的点,且的延长线交于点,此时的度数是____________度;

2)如图③,在中,是锐角,点边的垂直平分线与的交点,点分别在的延长线上,且的延长线交于点,若,求的大小(用含法的代数式表示).

【答案】(1)60;(2)60;(3)

【解析】

1只要证明△ACE≌△CBD,可得∠ACE=CBD,推出∠BFE=CBD+BCF=ACE+BCF=BCA=60°;

只要证明△ACE≌△CBD,可得∠ACE=CBD=DCF,即可推出∠BFE=D+DCF=D+CBD=BCA=60°;

2)只要证明△AEC≌△CDB,可得∠E=D,即可推出∠BFE=D+DCF=E+ECA=OAC=α.

解:(1如图①中,

∵△ABC是等边三角形,

AC=CB,∠A=BCD=60°,

AE=CD

∴△ACE≌△CBD

∴∠ACE=CBD

∴∠BFE=CBD+BCF=ACE+BCF=BCA=60°.

故答案为60

如图

∵△ABC是等边三角形,

AC=CB,∠A=BCD=60°,

∴∠CAE=BCD=120°

AE=CD

∴△ACE≌△CBD

∴∠ACE=CBD=DCF

∴∠BFE=D+DCF=D+CBD=BCA=60°.

故答案为60

2)如图中,

边的垂直平分线与的交点,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC,ACB=90°,B=30°,AD为∠CAB的角平分线,CD=3,则DB=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.

(2)结论应用:① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.

若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某甜品店用两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品份,乙款甜品份,共用去原料2000克.

原料

款式

原料

(克)

原料

(克)

甲款甜品

30

15

乙款甜品

10

20

1)求关于的函数表达式;

2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2.假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去原料多少克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,,将线段沿翻折,得到线段,连结于点,连结以下说法:①,②,③,④中,正确的有(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

(1)试探究线段AECG的关系,并说明理由.

(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=4.

①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.

②当△CDE为等腰三角形时,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(AB的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BMy轴于N.

(1)求点A、B的坐标;

(2)BN=MN,且SMBC=,求a的值;

(3)若∠BMC=2ABM,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解黔东南州某县2013届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.

成绩分组

组中值

频数

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并补全频数分布直方图;

(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?

查看答案和解析>>

同步练习册答案