【题目】是的高.
(1)如图1,若,的平分线交于点,交于点,求证:;
(2)如图2,若,的平分线交于点,求的值;
(3)如图3,若是以为斜边的等腰直角三角形,再以为斜边作等腰,是的中点,连接、,试判断线段与的关系,并给出证明.
【答案】(1)证明见解析;(2);(3)
【解析】
(1)根据角平分线的定义得到∠CAE=∠BAE,根据同角的余角相等得到∠ACD=∠B,根据三角形的外角性质得到∠CFE=∠CEF,得到CE=CF;
(2)在AD上取点H,使DH=DG,连接CH,证明BC=BH,计算即可;
(3)作MN⊥AB于N,证明△CDQ≌△QNM,根据全等三角形的性质证明即可.
(1)证明:∵平分,
∴,
又∵,是的高,
∴,
∴,
又∵,,
∴,
∴.
(2)解:在上截取,连接,
∵,
可得,,,
设,则,
∵,平分,
∴,,
∴,
∴,
∴,
∴,
∴,
∴;
(3)解:;
证明:延长至点使,连接,
在和中,
∵,
∴≌(),
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∵,
∴,
在和中,
∵,
∴≌(),
∴,,
∴,
∴,;
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a、b、c、d.
(1)若c与d互为相反数,则a________;
(2)若d2b8,那么点C对应的数是________;
(3)若abcd0,ab0求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.
(1)△BDF是什么三角形?请说明理由;
(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)
(3)当移动点D使EF∥AB时,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把正整数1,2,3,4……,排列成如图1所示的一个表,从上到下分别称为第1行、第2行、…,从左到右分别称为第1列、第2列、…….用图2所示的方框在图1中框住16个数,把其中没有被阴影覆盖的四个数分别记为A、B、C、D.设A=x.
(1)在图1中,2018排在第 行第 列;排在第m行第n列的数为 ,其中m≥1,1≤n≤8,且都是正整数;(直接写出答案)
(2)若A+2B+3D=357,求出C所表示的数;
(3)在图(2)中,被阴影覆盖的这些数的和能否为4212?如果能,请求出这些数中最大的数,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知C是线段AE上一点,,,B是CD上一点,CB=CE
1求证:≌;
2若∠E=65°,求∠A的度数;
3若AE=11,BC=3,求BD的长,直接写出结果
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,∠ABC 和∠ACB 的角平分线交于点 M.
(1)若∠ABC=40°,∠ACB=60°,求∠BMC 的度数;
(2)∠BMC 可能是直角吗?作出判断,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com