考点:抛物线与x轴的交点,二次函数的最值,二次函数与不等式(组)
专题:
分析:(1)由函数的图象可知c=3,把(1,0)代入抛物线的解析式即可求出b的值;
(2)由(1)中的抛物线解析式即可求出抛物线的对称轴和y的最大值;
(3)根据抛物线与x轴的交点坐标及对称轴求出它与x轴的另一交点坐标,求当y<0,x的取值范围就是求函数图象位于x轴的下方的图象相对应的自变量x的取值范围.
解答:解:(1)由函数的图象可知c=3,把(1,0)代入y=-x2+bx-c得,b=-2,
所以b=-2,c=-3;
(2)由(1)可知y=-x2-2x-3,
∴y=-(x+1)2+4,
∴直线x=-1,y=4;
(3)由图象知,抛物线与x轴交于(1,0),对称轴为x=-1,
∴抛物线与x轴的另一交点坐标为(-3,0),
∵y<0时,函数的图象位于x轴的下方,
∴x>1或x<-3.
点评:本题考查了抛物线和x轴的交点,其中△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.