【题目】如图,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学,校现有总长38m的铁栏围成.
(1)若围成的面积为,试求出自行车车棚的长和宽;
(2)能围成面积为的自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.
科目:初中数学 来源: 题型:
【题目】已知x2+(a+3)x+a+1=0是关于x的一元二次方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的一个实数根为1,求实数a的值和另一个实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于( )
A.B.C.4D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形AnBnCnDn,则四边形AnBnCnDn的面积为( )
A. B. C. D. 不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒2个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AC的长.
(2)求线段BP的长.(用含t的代数式表示)
(3)设△APQ的面积为S,求S与t之间的函数关系式.
(4)连结PQ,当PQ与△ABC的一边平行或垂直时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣x+8交x轴于点E,点A为x轴上的一个动点(点A不与点E重合),在直线l上取一点B(点B在x轴上方),使BE=5AE,连接AB,以AB为边沿顺时针方向作正方形ABCD,连结OB,以OB为直径作⊙P.
(1)当点A在点E右侧时.
①若点B刚好落在y轴上,则线段BE的长为 ,点D的坐标为 .
②若点A的坐标为(9,0),求正方形ABCD的边长.
(2)⊙P与正方形ABCD的边相切于点B,求点B的坐标.
(3)点Q为⊙P与直线BE的交点,连接CQ,当CQ平分∠BCD时,点B的坐标为 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.
(1)求证:四边形OCED是菱形;
(2)连接AE,交CD于点M,连接OM,取OM的中点F,连接EF.
①根据题意补全图形;
②若∠ACD=30°,请用等式表示线段CM、DE、EF之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com