【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图像记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;
(1)【尝试】①当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为
(2)②判断点A是否在抛物线E上;
(3)③求n的值.
(4)【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为 .
(5)【应用】
①二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
②以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.
【答案】
(1)(1,﹣2)
(2)
解:∵x=2时,y=t(4﹣6+2)+(1﹣t)(﹣4+4)=0,
∴点A(2,0)在抛物线E上
(3)
解:将(﹣1,n)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),
得n=t(1+3+2)+(1﹣t)(2+4)=6,
∴n的值为6
(4)A(2,0)和B(﹣1,6)
(5)
解:①不是.
∵将x=﹣1代入y=﹣3x2+5x+2,得到y=﹣6≠6,
∴二次函数y=y=﹣3x2+5x+2的图像不经过等B,
∴二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”
②如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.
∵AM=3,BM=6,BK=1,
由△KBC1∽△MBA,得 = ,即 = ,解得C1K= ,
∴C1(0, ),
由△KBC1≌△GAD1,得到AG=KB=1,GD1=KC1= ,
∴D1(3, ),
由△OAD2∽△GAD1,得到 = ,可得OD2=1,
∴D2(0,﹣1),
由△TBC2≌△OD2A,得到TC2=OA=2,BT=OD2=1,
∴C3(﹣3,5),
∵抛物线总是经过A、B,
∴符合条件的三点只可能是A、B、C或A、B、D.
①当抛物线经过A、B、C1时,将C1(0, )代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=﹣ ,
②当抛物线经过A、B、D1时,将D1(3, )代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t= ,
③当抛物线经过A、B、C2时,将C2(﹣3,5)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=﹣
④当抛物线经过A、B、D2时,将D2(0,﹣1)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t= ,
综上所述,满足条件的t的值为﹣ 或 或﹣ 或
【解析】【尝试】(1)解:当t=2时,
抛物线y=2(x2﹣3x+2)+(1﹣2)(﹣2x+4)
=2x2﹣4x
=2(x﹣1)2﹣2,
∴顶点坐标(1,﹣2).
所以答案是(1,﹣2).
【发现】解:通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(﹣1,6).
所以答案是A(2,0)和B(﹣1,6).
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4 ,则菱形ABCD的周长是( )
A.8
B.16
C.8
D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次项系数为b,数轴上A、B两点所对应的数分别是a和b.
(1)则a= ,b= .A、B两点之间的距离= ;
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.
(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从1名男生和3名女生中随机抽取参加“我爱盐城”演讲比赛的同学.
(1)若抽取1名,恰好是男生的概率为;
(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)﹣7﹣5.
(2)(﹣15)﹣(﹣9)
(3)(﹣5)×(﹣7)+20÷(﹣4)
(4)()×(﹣36)
(5)﹣81÷×÷(﹣16)
(6)5﹣(﹣2)+(﹣3)﹣(+4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N,满足4CN=5ON.已知抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的函数关系式;
(2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若△BCD和△ABC面积满足S△BCD= S△ABC , 求点D的坐标;
(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒 个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com