【题目】如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.
(1)求A点和D点的坐标;
(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.
(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.
【答案】(1)D(0,),A(3,0);(2)DE=OD+EB; 理由见解析;(3)点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明见解析.
【解析】
(1)根据完全平方式和绝对值的非负性确定a,b的值,从而求点的坐标;
(2)在CO的延长线上找一点F,使OF=BE,连接AF,通过△AOF≌△ABE,得到AF=AE,∠OAF=∠BAE,等量代换得到∠DAF=∠EAD,进而证明△AFD≌△AED,从而求解;
(3)分三种情形讨论求解:AD=DP或AD=AP或PD=AP,分别画图根据AD和OA的长确定点P的坐标.
(1)∵(a﹣3)2+|b﹣|=0,
∴a=3,b=,
∴D(0,),A(3,0);
(2)DE=OD+EB; 理由如下:
如图1,在CO的延长线上找一点F,使OF=BE,连接AF,
在△AOF和△ABE中, ,
∴△AOF≌△ABE(SAS),
∴AF=AE,∠OAF=∠BAE,
又∵∠OAB=90°,∠DAE=,
∴∠BAE+∠DAO=45°,
∴∠DAF=∠OAF+∠DAO=45°,
∴∠DAF=∠EAD,
在△AFD和△AED中, ,
∴△AFD≌△AED(SAS),
∴DF=DE=OD+EB;
(3)有3种情况共6个点:
①当DA=DP时,如图2,
Rt△ADO中,OD=,OA=3,
∴AD=,
∴P1(﹣3,0),P2(0,3),P3(0,﹣);
②当AP4=DP4时,如图3,
∴∠ADP4=∠DAP4=30°,
∴∠OP4D=60°,
Rt△ODP4中,∠ODP4=30°,OD=,
∴OP4=1,
∴P4(1,0);
③当AD=AP时,如图4,
∴AD=AP5=AP6=2,
∴P5(3+2,0),P6(3﹣2,0),
综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).
证明:P5(3+2,0),
∵∠OAD=30°且△ADO是直角三角形,
又∵AO=3,DO=,
∴DA=2,
而P5A=|3+2﹣3|=2,
∴P5A=DA,
∴△P5AD是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.
(1)求直线AB的表达式;
(2)求AC:CB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.
(1)求m的值;
(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A和点B分别是反比例函数y=(k≠0)图象上两点,连接AB交x轴负半轴于点C,连接BO,tan∠BCO=,∠BOC=135°,CO=2,过点A作AD∥BO交反比例函数y=于点D,连接OD,BD.
(1)求点A的坐标;
(2)求△OBD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.
(1)求证:AE为⊙O的切线.
(2)当BC=8,AC=12时,求⊙O的半径.
(3)在(2)的条件下,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B(3,3)在双曲线 (x>0)上,点D在双曲线 (x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.
(1)求k的值;
(3)求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.
(1)已知两条抛物线①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2﹣2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com