分析 由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,四边形ABEF是菱形,由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AB=AE=4,AP=2,过点P作PM⊥AD于M,得到PM=$\sqrt{3}$,AM=1,从而得到DM=5,由勾股定理求出PD、PB的长,即可得出结果.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFB=∠FBE,
∵∠ABF=∠FBE,
∴∠ABF=∠AFB,
∴AB=AF,
同理AB=BE,
∴四边形ABEF是菱形,
∴AE⊥BF,
∵∠ABC=60°,![]()
∴∠ABF=30°,∠BAP=∠FAP=60°,△ABE为等边三角形,
∴AB=AE=4,
∵AB=4,
∴AP=2,
过点P作PM⊥AD于M,如图所示:
∴PM=$\sqrt{3}$,AM=1,
∵AD=6,
∴DM=5,
∴PD=$\sqrt{P{M}^{2}+D{M}^{2}}$=$\sqrt{(\sqrt{3})^{2}+{5}^{2}}$=2$\sqrt{7}$;
BP=$\sqrt{A{B}^{2}-A{P}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴菱形ABEF的面积=2×$\frac{1}{2}$BP•AE=2×$\frac{1}{2}$×2$\sqrt{3}$×4=8$\sqrt{3}$;
故答案为:2$\sqrt{7}$,8$\sqrt{3}$.
点评 本题主要考查了平行四边形的性质、平行线的性质、菱形的判定与性质、含30°角的直角三角形性质、勾股定理,等边三角形的判定与性质、菱形面积的计算等知识;熟练掌握菱形的判定与性质是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $3\sqrt{2}-1$ | B. | $\sqrt{15}-1$ | C. | $\sqrt{15}$ | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 10m | B. | 9m | C. | 8m | D. | 7m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com