【题目】热爱学习的小明同学在网上搜索到下面的文字材料:
在x轴上有两个点它们的坐标分别为(a,0)和(c,0).则这两个点所成的线段的长为|a﹣c|;同样,若在y轴上的两点坐标分别为(0,b)和(0,d),则这两个点所成的线段的长为|b﹣d|.如图1,在直角坐标系中的任意两点P1,P2,其坐标分别为(a,b)和(c,d),分别过这两个点作两坐标轴的平行线,构成一个直角三角形,其中直角边P1Q=|a﹣c|,P2Q=|b﹣d|,利用勾股定理可得:线段P1P2的长为.
根据上面材料,回答下面的问题:
(1)在平面直角坐标系中,已知A(6,﹣1),B(6,5),则线段AB的长为 ;
(2)若点C在y轴上,点D的坐标是(﹣3,0),且CD=6,则点C的坐标是 ;
(3)如图2,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,求△ABC周长的最小值.
【答案】(1)6;(2)或;(3).
【解析】
(1)根据线段长度计算方法计算即可;
(2)设C点坐标为(0,b),根据线段长度计算方法计算即可;
(3)找到点A关于y轴的对称点A'(﹣1,4),连接A'B交y轴于点C,此时△ABC周长的最小,然后根据线段长度计算方法即可求解.
解:(1)∵A(6,﹣1),B(6,5),
∴.
故答案为:6;
(2)设C点坐标为(0,b),
则在Rt△OCD中,CD2=OC2+OD2,即(﹣3﹣0)2+(0﹣b)2=62,
解得.
所以C的坐标为或.
故答案为:或;
(3)如图,设A点关于y轴的对称点为A',则点A'的坐标为(﹣1,4),A'C = AC,
∵△ABC的周长=AB+ AC+CB=AB+ A'C+CB,其中线段AB的长为定值,
∴当C点为A'B与y轴的交点时,此时A'B即为A'C+CB的最小值,△ABC的周长最小,
此时△ABC的周长=AB+A'C+CB= AB+A'B.
∵点A,B的坐标分别为(1,4)和(3,0),
∴AB2..
所以△ABC的周长的最小值为.
科目:初中数学 来源: 题型:
【题目】甲、乙两车间同时开始加工一批零件,从开始加工到加工完成这批零件,甲车间工作了8个小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止.设甲、乙两车间各自加工零件的数量为(个),甲车间加工的时间为(时),与之间的函数图象如图所示.
(1)甲车间每小时加工零件的个数为_________个;这批零件的总个数为__________个;
(2)求乙车间维护设备后,乙车间加工零件的数量与之间的函数关系式;
(3)在加工这批零件的过程中,当甲、乙两车间共同加工完成810个零件时,求甲车间加工的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示,
(1)先画出△ABC关于x轴对称的图形△A1B1C1,再画出△A1B1C1关于y轴对称的图形△A2B2C2;
(2)直接写出△A2B2C2各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.
(1)求BD的长;
(2)当CD为何值时,△BDC是以CD为斜边的直角三角形?
(3)在(2)的条件下,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD//BC,,AD=24 cm,AB=8 cm, BC=26 cm,动点P从A开始沿AD边向D以1cm/s的速度运动;Q从点C开始沿CB边向B以3 cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.
(1)当运动时间为t秒时,用含t的代数式表示以下线段的长: AP=________, BQ=__________;
(2)当运动时间为多少秒时,四边形PQCD为平行四边形?
(3)当运动时间为多少秒时,四边形ABQP为矩形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD的平分线交CD于点G,AD=AE.若AD=5,DE=6,则AG的长是( )
A. 6B. 8C. 10D. 12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com