精英家教网 > 初中数学 > 题目详情
7.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB与△BEC全等吗?为什么?
(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.
(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.

分析 (1)求出∠ADB=∠ABC=∠BEC=90°,求出∠DAB=∠CBE,根据AAS推出△ADB≌△BEC即可;
(2)根据全等得出AD=BE,CE=DB,即可求出答案;
(3)证明过程和(1)(2)类似.

解答 解:(1)△ADB≌△BEC,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
$\left\{\begin{array}{l}{∠DAB=∠CBE}\\{∠ADB=∠BEC}\\{AB=BC}\end{array}\right.$,
∴△ADB≌△BEC(AAS);

(2)CE+AD=DE,
理由是:∵△ADB≌△BEC,
∴AD=BE,CE=DB,
∵DB+BE=DE,
∴CE+AD=DE;

(3)CE-AD=DE,
理由是:∵AD⊥PQ,CE⊥PQ,
∴∠ADB=∠ABC=∠BEC=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△ADB和△BEC中,
$\left\{\begin{array}{l}{∠DAB=∠CBE}\\{∠ADB=∠BEC}\\{AB=BC}\end{array}\right.$,
∴△ADB≌△BEC(AAS);
∴AD=BE,CE=DB,
∵DB-BE=DE,
∴CE-AD=DE.

点评 本题考查了垂直定义,全等三角形的性质和判定的应用,能推出△ADB≌△BEC是解此题的关键,证明过程类似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.(-0.5)2013×22014的计算结果正确的是(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请你在方格中画出这个几何体的主视图和左视图:

(2)解方程:x-$\frac{x-2}{5}=\frac{2x-5}{3}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是(8,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图所示,用两根钢索加固直立的电线杆,若要使钢索AB与AC的长度相等,需添条件BD=CD,理由是线段垂直平分线上的点到线段两端点的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.我国很多城市水资源缺乏,为了增强居民的节水意识,某市制定了每月用水18立方米以内(不含18立方米)和用水18立方米及以上两种收费标准(收费标准指每立方米水的价格),某用户每月应交水费y(元)是用水量x(立方米)的函数,其函数图象如图所示.
(1)根据图象,求出y关于x的函数表达式.
(2)求自来水公司在这两个用水范围内的收费标准.
(3)若该用户计划某个月水费不超过51.6元,则这个月最多可用多少立方米水?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图:已知?ABCD中,以AB为斜边在?ABCD内作等腰直角△ABE,且AE=AD,连接DE,过E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=$\sqrt{3}$,求AB的长.
(2)求证:2GE+EF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,抛物线y=-x2+bx+c交x轴于A(1,0),B(5,0)两点,顶点为D,直线y=-$\frac{1}{2}$x+3交x轴、y轴于点E、F,交抛物线于M、N两点.
(1)抛物线的解析式为y=-x2+6x-5;点D的坐标为(3,4);
(2)点P为直线MN上方的抛物线上的点,当△PMN的面积最大时,求点P的坐标;
(3)在抛物线上是否存在点Q,使点Q关于直线EF的对称点在x轴上?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O的连线与x轴的正半轴的夹角为60°,则点P的坐标是(1,$\sqrt{3}$).

查看答案和解析>>

同步练习册答案