精英家教网 > 初中数学 > 题目详情

【题目】如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为,则图中所有正方形的面积的和是___________

【答案】192

【解析】

根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.

解:如图:

∵所有的三角形都是直角三角形,所有的四边形都是正方形,

∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2

又∵a2+b2=x2c2+d2=f2

∴正方形ABCD的面积和=a2+b2+c2+d2=x2+f2=82=64cm2),

则所有正方形的面积的和是:64×3=192cm2).

故答案为:192.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系内,ABC各顶点的坐标分别是A(﹣24),B(﹣43),C(﹣11).将ABC向右平移5个单位长度,再向下平移4个单位长度得到ABC

1)请作出平移后的ABC,并写出ABC各顶点的坐标;

2)如果将ABC看成是由ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为宣传扫黑除恶专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程( )

A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1

C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,斜边的中垂线于点,交的外角平分线于点于点垂直的延长线与点,连接于点,现有不列结论:①,②,③,④,⑤,其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图C是以AB为直径的⊙O上一动点过点CO直径CD过点BBECD于点E.已知AB=6cm设弦AC的长为xcmBE两点间的距离为ycm(当点C与点A或点B重合时y的值为0).

小冬根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究

下面是小冬的探究过程请补充完整

1)通过取点、画图、测量得到了xy的几组值如下表

经测量m的值是(保留一位小数)

2)建立平面直角坐标系描出表格中所有各对对应值为坐标的点画出该函数的图象

3在(2)的条件下当函数图象与直线相交时(原点除外)BAC的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,3),D为⊙C在第一象限内的一点且∠ODB=60°.

求:(1)求线段AB的长及⊙C的半径;

(2)求B点坐标及圆心C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和DEB中,已知AB=DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?

问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律

探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有1+2+1=2×1+2+3=12条线段.

探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有1+2+3+1+2+1=3×1+2+3+4=30条线段.

探究三:

请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?

(画出示意图,并写出探究过程)

问题解决:

请你仿照上面的方法,探究将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)

实际应用:

将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=3OB=2OAC为直线y=2x与直线AB的交点,点D在线段OC上,OD=

1)求点C的坐标;

2)若P为线段AD上一动点(不与AD重合).P的横坐标为xPOD的面积为S,请求出Sx的函数关系式;

3)若F为直线AB上一动点,Ex轴上一点,是否存在以ODEF为顶点的四边形是平行四边形?若存在,写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案