【题目】已知,如图矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点B与点D重合,折痕为EF.
(1)求证:BE=BF;
(2)求△ABE的面积;
(3)求折痕EF的长.
【答案】(1)证明见解析;(2)6cm2.(3)
【解析】
(1)由翻折得出∠BEF=∠DEF,由AD∥BC得出∠BFE=∠DEF,进一步得出∠BEF=∠BFE求得结论;
(2)设AE=x,则BE=DE=9-x,根据勾股定理求得AE,进一步求△ABE的面积;
(3)作EH⊥BC于H,则易得:EH=AB,BH=AE,再用勾股定理求解.
(1)证明:∵将矩形折叠,使点B与点D重合,折痕为EF.
∴∠BEF=∠DEF,……………………………………………1’
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF,……………………………………………2’
∴∠BEF=∠BFE,
∴BE=BF.……………………………………………3’
(2)解:设AE=x,则BE=DE=9﹣x,……………………………………………4’
由勾股定理得:x2+32=(9﹣x)2,……………………………………………5’
解得:x=4,……………………………………………6’
则S△ABE=ABAE=6cm2.……………………………………………7’
(3)作EH⊥BC于H,则易得:EH=AB=3,BH=AE=4
在Rt△ABE中,AB=3,AE=4
∴BE=5,……………………………………………8’
∴BF=BE=5
∴HF=BF=BH=5-4=1……………………………………………9’
在Rt△EHF中,EH=3,HF=1
∴DF=…
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )
A.2B.2.2C.2.4D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,观察每个正多边形中的变化情况,解答下列问题:
……
(1)将下面的表格补充完整:
正多边形的边数 | 3 | 4 | 5 | 6 | …… | |
的度数 | _________ | _________ | _________ | _________ | …… | _________ |
(2)根据规律,是否存在一个正边形,使其中的?若存在,写出的值;若不存在,请说明理由.
(3)根据规律,是否存在一个正边形,使其中的?若存在,写出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移 个单位长度得到三角形 ,点A,B,C的对应点分别为 ,,.
(1)写出点 ,, 的坐标;
(2)在图中画出平移后的三角形 ;
(3)三角形 的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:
(1)本次调查一共随机抽取了个参赛学生的成绩;
(2)表1中a= ;
(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 ;
(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,四边形为平行四边形,在轴上一定点,为轴上一动点,且点从原点出发,沿着轴正半轴方向以每秒个单位长度运动,已知点运动时间为.
(1)点坐标为________,点坐标为________;(直接写出结果,可用表示)
(2)当为何值时,为等腰三角形;
(3)点在运动过程中,是否存在,使得,若存在,请求出的值,若不存在,请说明理由!
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,E为AB上一点,且AE=2,M为AD上一动点(不与A、D重合),AM=x,连结EM并延长交CD的延长线于F,过M作MG⊥EF交直线BC于点G,连结EG、FG.
(1)如图1,若M是AD的中点,求证:①△AEM≌△DFM;②△EFG是等腰三角形;
(2)如图2,当x为何值时,点G与点C重合?
(3)当x=3时,求△EFG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).
(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;
(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)当m为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com