【题目】(1)如图 1,在边长为 1 个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.现将ABC 绕点 A 按顺时针方向旋转 90°,点 B 的对应点为B′,点 C 的对应点为C′, 连接 BB′,如图所示则∠AB′B= .
(2)如图 2,在等边ABC 内有一点 P,且 PA=2,PB= ,PC=1,如果将△BPC 绕点 B 逆时针旋转 60°得出△ABP′,求∠BPC 的度数和 PP′的长;
(3)如图3,在中,,,,点O为内一点,连接AO,BO,CO,且,求的值.
【答案】(1)45°;(2)∠BPC=150°,PP′=;(3).
【解析】
(1)根据旋转的性质,得到△ABB’是等腰直角三角形,即可得到答案;
(2)根据旋转的性质,BP=BP’,∠PBP’=60°,则是等边三角形,则,,由利用勾股定理的逆定理,得到是直角三角形,则,即可得到∠BPC;
(3)将△绕点B顺时针旋转至△处,连接,利用直角三角形的性质求出AB,BC,然后利用旋转的性质,得到是等边三角形,然后得到四点共线,然后利用勾股定理求出的长度,即可得到.
解:如图1所示,连接BB',将△ABC绕点A按顺时针方向旋转90°,
∴AB=AB',∠B'AB=90°,
∴∠AB'B=45°.
故答案为:45°;
(2)∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B顺时针旋转60°得出△ABP',如图2,
∴AP'=CP=1,BP'=BP=,∠PBC=∠P'BA,∠AP'B=∠BPC.
∵∠PBC+∠ABP=∠ABC=60°,
∴∠ABP'+∠ABP=∠ABC=60°,
∴△BPP'是等边三角形,
∴PP'=,∠BP'P=60°.
∵AP'=1,AP=2,
∴,
∴,
∴∠AP'P=90°,则△PP'A是直角三角形,
∴;
(3)如图3,将△绕点B顺时针旋转至△处,连接,
在中,,,,
,
,
绕点B顺时针方向旋转,
如图所示;
,
绕点B顺时针方向旋转,得到,
,,,
是等边三角形,
,,
,
,
、O、、四点共线,
在中,,
.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=α.⊙O是△ABC的内切圆,⊙P分别与CA的延长线、CB的延长线以及直线AB均只有一个公共点,⊙O的半径为m,⊙P的半径为n.
(1)当α=90°时,AC=6,BC=8时,m= ,n= .
(2)当α取下列度数时,求△ABC的面积(用含有m、n的代数式表示).
①如图①,α=90°;
②如图②,α=60°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,是一次函数和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求的面积;
(3)根据图象直接写出的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.
(1)求函数和的表达式.
(2)已知直线与轴相交于点在第一象限内,求反比例函数的图象上一点,使得.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:在图(1)(2)所示抛物线中,抛物线与轴交于、,与轴交于,点是抛物线的顶点,过平行于轴的直线是它的对称轴,点在对称轴上运动。仅用无刻度的直尺画线的方法,按要求完成下列作图:
(1)在图①中作出点,使线段最小;
(2)在图②中作出点,使线段最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记
载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=______寸,CD=____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.
图1为点P在⊙O外的情形示意图.
(1)若点B(1,0),C(1,1),D(0,),则SB= ;SC= ;SD= ;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR,直接写出满足条件的线段PQ长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com