精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,斜边的中点,以为圆心,线段的长为半径画圆心角为的扇形,弧经过点,则图中阴影部分的面积为________

【答案】

【解析】

连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.

连接OC,作OM⊥BC,ON⊥AC.

∵CA=CB,∠ACB=90°,点O为AB的中点,

∴OC=AB=1,四边形OMCN是正方形,OM=

则扇形FOE的面积是:

∵OA=OB,∠AOB=90°,点D为AB的中点,

∴OC平分∠BCA,

又∵OM⊥BC,ON⊥AC,

∴OM=ON,

∵∠GOH=∠MON=90°,

∴∠GOM=∠HON,

则在△OMG和△ONH中,

∴△OMG≌△ONH(AAS),

∴S四边形OGCH=S四边形OMCN=(2=

则阴影部分的面积是:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在 4 4 的正方形网格中,有 5 个黑色小正方形.

1)请你移动一个黑色小正方形,使移动后所形成的4 4 的正方形网格图形是轴对称图形.如:将 8 号小正方形移至 14 号;你的另一种做法是将 号小正方形移至 号(填写标号即可);

2)请你移动 2 个小正方形,使移动后所形成的图形是轴对称图形.你的一种做法是将 号小正方形移至 号、将 号小正方形移至 号(填写标号即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴相交于两点,与轴相交于,是二次函数图象上的一对对称点,一次函数的图象过点

点的坐标;

求一次函数的表达式;

根据图象写出使一次函数值大于二次函数值的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1的解析式为,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1l2交于点C.

1)求点A、点B、点C的坐标,并求出△COB的面积;

2)若直线l2上存在点P(不与B重合),满足SCOP=SCOB,请求出点P的坐标;

3)在y轴右侧有一动直线平行于y轴,分别与l1l2交于点MN,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,延长线上一点,的平分线相交于点,则(   )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)画出△ABC和△A1B1C1关于原点O对称,画出△A1B1C1,并写出△A1B1C1的各顶点的坐标;

(2)将△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2,画出△A2B2C2,并写出△A2B2C2的各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,OAOB,点B的坐标为(10)AB,线段OB上的动点(C不与OB重合),连接AC,ACCD,DEx轴,垂足为点E.

(1)求证:ACOCDE;

(2)猜想BDE的形状,并证明结论:

(3)如图2,BCD为等腰三角形时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON90°,已知△ABC中,ACBCAB6,△ABC的顶点AB分别在边OMON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有(  )个.

A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC,BC=3,A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______

查看答案和解析>>

同步练习册答案