【题目】如图,在平面直角坐标系中,直线l1的解析式为,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.
(1)求点A、点B、点C的坐标,并求出△COB的面积;
(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;
(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.
【答案】(1)A(6,0),B(0,3),C(2,2);面积为3;(2)P(4,1);(3)Q(0,)或B(0,)或C(0,)
【解析】
(1)由一次函数解析式求出点A、B坐标,联立解析式解方程组得到点;然后根据的面积,即可得到三角形面积;
(2)设点,,则,依据坐标系两点距离公式列方程可得,即可求解;
(3)分、、三种情况,分别画出符合条件的图形,根据线段相等关系列方程求解即可.
解:(1)直线的解析式为,
当x=0时,y=3,
当y=0时,,解得:x=6,
∴与轴、轴分别交于点、点坐标分别为、,
∵直线l1与l2交于点C.
联立得方程组:,解得:,
故点;
的面积;
(2)设点,
,则,
则,
解得:或0(舍去,
故点;
(3)设点、、的坐标分别为、、,
①当时,
,,,
,,
,
,,
即:,
解得:,
∴Q点坐标为:
②当时,
则,即:,解得:,
;
∴Q点坐标为:
③当时,
同②理可得:;
∴Q点坐标为:
综上,点的坐标为或或.
科目:初中数学 来源: 题型:
【题目】已知:方程组的解x为非正数,y为负数.
(1)求a的取值范围;
(2)化简|a-3|+|a+2|;
(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx﹣2与x轴,y轴分别交于B,C两点,其中OB=1.
(1)求k的值;
(2)若点A(x,y)是第一象限内的直线y=kx﹣2上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;
(3)在(2)的条件下,探索:
①当点A运动到什么位置时,△AOB的面积是1;
②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一元二次方程ax2+bx+c=0(a≠0)下列说法正确的是( )
①若a,c异号,则方程ax2+bx+c=0(a≠0)一定有实数根;
②若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)一定有两个不相等实数根;
③若b=a+c,则方程ax2+bx+c=0(a≠0)有两个不相等的实数根;
④若方程ax2+bx+c=0(a≠0)的两根符号相同,那么方程cx2+bx+a=0(c≠0)的两根符号也相同.
A. 只有①③ B. 只有①②④ C. 只有①② D. 只有②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,
b满足 |a+2|+=0,点C的坐标为(0,3).
(1)求a,b的值及S三角形ABC;
(2)若点M在x轴上,且S三角形ACM=S三角形ABC,试求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有、两枚均匀的小立方体(立方体的每个面上分别标有数字、、、、、).用小明掷立方体朝上的数字为,小明掷立方体朝上的数字为来确定点,则小明各掷一次所确定的点落在已知抛物线上的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com