【题目】已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.
(1)直接写出A、B、C、D坐标;
(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.
(3)若直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.
【答案】(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1
【解析】
(1)可通过二次函数的解析式列出方程,即可求出相关点的坐标;
(2)存在,先求出直线BC和直线BD的解析式,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,x﹣),G(x,x﹣3),列出等式方程,即可求出点P坐标;
(3)求出直线y=x+t经过点B时t的值,再列出当直线y=x+t与抛物线y=x2﹣2x﹣3只有一个交点时的方程,使根的判别式为0,求出t的值,即可写出t的取值范围.
解:(1)在y=x2﹣2x﹣3中,
当x=0时,y=﹣3;当y=0时,x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),C(0,﹣3),
∵D为OC的中点,
∴D(0,﹣);
(2)存在,理由如下:
设直线BC的解析式为y=kx﹣3,
将点B(3,0)代入y=kx﹣3,
解得k=1,
∴直线BC的解析式为y=x﹣3,
设直线BD的解析式为y=mx﹣,
将点B(3,0)代入y=mx﹣,
解得m=,
∴直线BD的解析式为y=x﹣,
设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,x﹣),G(x,x﹣3),
∴EH=﹣x+,HG=x﹣﹣(x﹣3)=﹣x+,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
当EH=HG=GP时,﹣x+=﹣x2+3x,
解得x1=,x2=3(舍去),
∴点P的坐标为(,﹣);
(3)当直线y=x+t经过点B时,
将点B(3,0)代入y=x+t,
得,t=﹣1,
当直线y=x+t与抛物线y=x2﹣2x﹣3只有一个交点时,方程x+t=x2﹣2x﹣3只有一个解,
即x2﹣x﹣3﹣t=0,
△=()2﹣4(﹣3﹣t)=0,
解得t=﹣,
∴由图2可以看出,当直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点时,t的取值范围为:﹣<t<﹣1时.
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象经过点,射线与反比例函数的图象的另一个交点为,射线与轴交于点,与轴交于点轴, 垂足为.
求反比例函数的解析式;
求的长
在轴上是否存在点,使得与相似,若存在,请求出满足条件点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)
甲:301,300,305,302,303,302,300,300,298,299
乙:305,302,300,300,300,300,298,299,301,305
(1)分别计算甲、乙这两个样本的平均数和方差;
(2)比较这两台包装机包装质量的稳定性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划购买,两种型号的机器人加工零件.已知型机器人比型机器人每小时多加工个零件,且型机器人加工个零件用的时间与型机器人加工个零件所用的时间相同.
(1)求,两种型号的机器人每小时分别加工多少零件;
(2)该工厂计划采购,两种型号的机器人共台,要求每小时加工零件不得少于个,则至少购进型机器人多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC,∠ABC=90°,AB=BC=2,现将Rt△ABC绕点A逆时针旋转30°得到△AED,则图中阴影部分的面积是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com