精英家教网 > 初中数学 > 题目详情

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。

(1)求y与x之间的函数关系式;

(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是米数,求出满足条件的所有围建方案。

【答案】解:(1)如图,AD的长为xm,DC的长为ym,

根据题意,得,即

y与x之间的函数关系式为

(2)由,且x,y都为正整数,

x可取1,2,3,4,5,6,10,12,15,20,30,60。

符合条件的有:x=5时,y=12;x=6时,y=10;x=10时,y=6。

答:满足条件的所有围建方案:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m。

解析(1)由面积为60m2列式即可得y与x之间的函数关系式。

(2)由和x,y都为正整数列举出所有x值,根据得出符合条件的值即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1都是边长为1的等边三角形.

四边形ABCD是菱形吗?为什么?

如图2,将沿射线BD方向平移到的位置,则四边形是平行四边形吗?为什么?

移动过程中,四边形有可能是矩形吗?如果是,请求出点B移动的距离写出过程;如果不是,请说明理由3供操作时使用

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABx轴上,ABBCAOOB2BC3

1)写出点ABC的坐标.

2)如图,过点BBDACy轴于点D,求∠CAB+BDO的大小.

3)如图,在图中,作AEDE分别平分∠CAB、∠ODB,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D
(1)如图1,求证:BD=ED;
(2)如图2,AD为⊙O的直径.若BC=6,sin∠BAC= ,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A14),B3m)两点.

1)求反比例函数和一次函数的解析式;

2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于OOD平分∠AOFOECD于点O,∠150°,求∠BOC、∠BOF的度数.

解:∵OECD(     )

∴∠DOE_____°(     )

∵∠150°(     )

∴∠AOD=∠________-∠________________°

∵∠BOC与∠AOD_______(____________)

∴∠BOC=∠________=∠_________°(_____________)

OD平分∠AOF(______________)

且∠AOD____________°(______________)

∴∠AOF2__________________°(      )

∵∠BOF+∠AOF______°(        )

∴∠BOF______°-∠AOF_________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为(
A.60°
B.55°
C.50°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段、(2)半圆弧、(3)线段后,回到出发点.蚂蚁离出发点的距离(蚂蚁所在位置与点之间线段的长度)与时间之间的图象如图2所示,问:(注:圆周率的值取3

1)请直接写出:花坛的半径是 米,

2)当时,求之间的关系式;

3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:

①蚂蚁停下来吃食物的地方,离出发点的距离.

②蚂蚁返回所用时间.

查看答案和解析>>

同步练习册答案