【题目】如图,矩形中,对角线,相交于点,平分交于点,,则的度数为( )
A.B.C.D.
【答案】B
【解析】
由矩形ABCD,得到OA=OB,根据AE平分∠BAD,可得到等边三角形OAB和等腰直角三角形ABE,然后可得OB=BE,求出∠OBE,即可得到∠BOE,然后加上∠AOB,可得的度数.
∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,OA=OC,OB=OD,∠ABC=∠BAD=90°,
∴OA=OB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°=∠AEB,
∴AB=BE,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=60°
∴△BAO是等边三角形,
∴AB=OB=BE,∠ABO=∠AOB=60°,
∴∠OBE=90°60°=30°,
∴在等腰△BOE中,
∴∠AOE=∠BOE+∠AOB=75°+60°=135°.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,正确的是( )
A.顶点坐标为(﹣1,3)
B.抛物线与x轴的另一个交点是(﹣4,0)
C.当x<0时,y随x的增大而增大
D.b+c=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是( )
A.开口向上
B.对称轴是y轴
C.当x>0时,y随x的增大而增大
D.都有最低点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3(a≠0,且a,b为常数)的图象经过点(2,1)和(3,0).
(1)试求这条抛物线的解析式;
(2)若将抛物线进行上、下或左、右平移,请你写出一种平移的方法,使平移后的抛物线顶点落在直线y=x上,并直接写出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(a+b)x+c2+2ab=0有两个相等的实数根,其中a、b、c为△ABC的三边长.
(1)试判断△ABC的形状,并说明理由;
(2)若CD是AB边上的高,AC=2,AD=1,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com