【题目】如图,四边形中,平分.
(1)求证:;
(2)求证:点是的中点;
(3)若,求的长.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)通过证明△ABD∽△BCD,可得,可得结论;
(2)通过和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性质可得结论;
(3)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=ADCD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得.
解:(1)证明:∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD,
∴,
∴BD2=ADCD
(2)证明:∵,
∴∠MBD=∠BDC,∠MBC=90°,
∵∠MDB=∠CDB,
∴∠MBD=∠MDB,
∴MB=MD,
∵∠MBD+∠ABM=90°,
∴∠ABM=∠CBD,
∵∠CBD=∠A,
∴∠A=∠ABM,
∴MA=MB,
∴MA=MD,
即M为AD中点;
(3)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=ADCD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2-CD2=12
∴MC2=MB2+BC2=28
∴MC=,
∵BM∥CD
∴△MNB∽△CND
∴,且MC=,
∴.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等
C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)的顶点M(1,﹣4a),且过点A(4,t),与x轴交于B、C两点(点B在点C的左侧),直线l经过点A,B,交y轴交于点D.
(1)若a=﹣1,当2≤x<4时,求y的范围;
(2)若△MBC是等腰直角三角形,求△ABM的面积;
(3)点E是直线l上方的抛物线上的动点,△BDE的面积的最大值为;设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、B、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.
根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;
动点在轴上,轴交反比例函数的图象于点.若.求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,1),B(1,3),C(4,3).
(1)将△ABC平移得到△A1B1C1,且C1的坐标是(0,﹣1),画出△A1B1C1;
(2)将△ABC绕点A逆时针旋转90°得到△A2B2C2,画出△A2B2C2;
(3)小娟发现△A1B1C1绕点P旋转也可以得到△A2B2C2,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.
(1)求抛物线的解析式;
(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;
(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com