【题目】如图,抛物线y=﹣x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=﹣x+3.
(1)求抛物线解析式;
(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;
(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE.
【答案】(1)y=﹣x2+2x+3;(2)Nx=3﹣=(0<t<3);(3)2.
【解析】
(1)求出A、B两点坐标,利用待定系数法即可解决问题;
(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.首先证明N、P、A三点在以M为圆心MA为半径的⊙M上,再根据△NMH≌△MPG,得到NH=MG,HM=PG,即可解决问题;
(3)如图2中,MN∥AE,QM=MA,得EN=QN,利用中点坐标公式,列出方程即可解决问题.
解:(1)∵直线AB的解析式为y=﹣x+3,
∴A(3,0),B(0,3),
∵抛物线y=﹣x2+bx+c经过A点,B点,
∴,解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H,
∵OA=OB,∠AOB=90°,
∴∠PAN=45°,
∵∠NMP=90°,
∴∠PAN=∠NMP,
∴N、P、A三点在以M为圆心MA为半径的⊙M上,
∴MN=MP,
∵∠NHM=∠PGM=∠NMP=90°,
∴∠NMH+∠PMG=90°,∠PMG+∠MPG=90°,
∴∠NMH=∠MPG,
∴△NMH≌△MPG,
∴NH=MG,HM=PG,
∵P(t,0),
∴Q(t,﹣t2+2t+3),M(,),
∴PG=MH=﹣t=,HG=+=,
∴Ny=,
∵点N在直线AB上,
∴Ny=﹣Nx+3,
∴Nx=3﹣=(0<t<3);
(3)如图2中,
∵MN∥AE,QM=MA,
∴EN=QN,
∴=,
∴t2﹣2t=0,
解得t=2或0(舍弃),
∴t=2时,MN∥AE.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,点E作DE的垂线交AB于点F.在点E的运动过程中,以EF为边,在EF上方作等边△EFG,则边EG的中点H所经过的路径长是( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数的图象与反比例函数()的图象交于点.轴于点,轴于点. 一次函数的图象分别交轴、轴于点、点,且,.
(1)求点的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,△ACM与△CBN都是等边三角形,AN与MB交于P.
(1)求证:AN=BM;
(2)连接CP,求证:CP平分∠APB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.
(1)求小明从点A到点D的过程中,他上升的高度;
(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x-3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.
(1)证明:EF2=4ODOP;
(2)若tan∠AFP=,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com