【题目】如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN,以上结论中,正确的是______ .(请把正确结论的序号都填上)
【答案】①②③④
【解析】
如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN故④正确.
如图,把△ADF绕点A顺时针旋转90°得到△ABH,
由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,
∵∠EAF=45°,
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°∠EAF=45°,
∴∠EAH=∠EAF=45°,
在△AEF和△AEH中,
,
∴△AEF≌△AEH(SAS),
∴EH=EF,
∴∠AEB=∠AEF,
∴BE+BH=BE+DF=EF,故②正确;
∵∠ANM=∠ADB+∠DAN=45°+∠DAN,
∠AEB=90°∠BAE=90°(∠HAB∠EAH)=90°(45°∠EAH)=45°+∠EAH,
∴∠ANM=∠AEB,
∴∠AEB=∠AEF=∠ANM;故①正确;
∵AC⊥BD,
∴∠AOM=∠ADF=90°,
∵∠MAO=45°∠NAO,∠DAF=45°∠NAO,
∴△OAM∽△DAF,故③正确;
连接NE,
∵∠MAN=∠MBE=45°,∠AMN=∠BME,
∴△AMN∽△BME,
∴,
∴,
∵∠AMB=∠EMN,
∴△AMB∽△NME,
∴∠AEN=∠ABD=45°,
∵∠EAN=45°,
∴∠NAE=∠NEA=45°,
∴△AEN是等腰直角三角形,
∴AE=AN,
∵△AMN∽△BME,△AFE∽△BME,
∴△AMN∽△AFE,
∴=,
∴EF=MN,
∵AB=AO,
∴S△AEF=S△AHE=HEAB=EFAB=MNAO=2×MNAO=2S△AMN.故④正确.
故答案为:①②③④.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD边长为5,顶点A,B在x轴的正半轴上,顶点D在y轴的正半轴上,且点A的坐标是(3,0),以点C为顶点的抛物线经过点A.
(1)求点C的坐标;
(2)求抛物线的解析式;
(3)若将上述抛物线进行平移,使得平移后的抛物线的顶点P在直线BC上,且此时的抛物线恰好经过点D,求平移后的抛物线解析式及其顶点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】连接多边形任意两个不相邻顶点的线段称为多边形的对角线.
(1)
对角线条数分别为 、 、 、 .
(2)n边形可以有20条对角线吗?如果可以,求边数n的值;如果不可以,请说明理由.
(3)若一个n边形的内角和为1800°,求它对角线的条数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O外,∠EAB=∠D=30°.
(1)∠C的度数为 ;
(2)求证:AE是⊙O的切线;
(3)当AB=3时,求图中阴影部分的面积(结果保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数的图象与轴交于、两点,与轴交于点,其中点在轴的正半轴上,点在轴的正半轴上,线段、的长()是方程的两个根,且点坐标为.
(1)求此二次函数的表达式;
(2)若点是线段上的一个动点(与点、不重合),过点作∥交于点,连接. 设的长为,△的面积为,求S与之间的函数关系式,并写出自变量的取值范围;
(3)在(2)的基础上试说明是否存在最大值,若存在,请求出的最大值,并求出此时点的坐标,判断此时△的形状;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG = 2BE. 如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的表达式为__________________;当BE =______m时,绿地AEFG的面积最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列结论中:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=3,其中正确的结论有( )
A.①②③B.①②③④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com